Fast and robust quantification of uncertainty in non-linear diffusion MRI models

被引:1
|
作者
Harms, R. L. [1 ]
Fritz, F. J. [1 ]
Schoenmakers, S. [1 ]
Roebroeck, A. [1 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, Maastricht, Netherlands
基金
欧洲研究理事会;
关键词
Uncertainty estimates; Variances; Diffusion MRI; Microstructure; Fisher Information Matrix (FIM); Cramer Rao Lower Bound (CRLB); ORIENTATION DISPERSION; FIBER ORIENTATION; WILD BOOTSTRAP; OPTIMIZATION; FRAMEWORK; DENSITY; ACCELERATION; PARAMETERS; PRECISION; INFERENCE;
D O I
10.1016/j.neuroimage.2023.120496
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and nonlinear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Sparsity-Promoting Sensor Selection for Non-Linear Measurement Models
    Chepuri, Sundeep Prabhakar
    Leus, Geert
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (03) : 684 - 698
  • [32] Non-Linear Regression Models with Vibration Amplitude Optimization Algorithms in a Microturbine
    Rodriguez-Abreo, Omar
    Rodriguez-Resendiz, Juvenal
    Montoya-Santiyanes, L. A.
    alvarez-Alvarado, Jose Manuel
    SENSORS, 2022, 22 (01)
  • [33] Comparison of non-linear models to describe growth of Iranian Guilan sheep
    Hossein-Zadeh, Navid Ghavi
    Golshani, Mohammad
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2016, 29 (03) : 199 - 209
  • [34] Aircraft Control based on Fast Non-linear MPC & Multiple-shooting
    Gros, Sebastien
    Quirynen, Rien
    Diehl, Moritz
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 1142 - 1147
  • [35] Concurrent multiresponse multifactorial screening of an electrodialysis process of polluted wastewater using robust non-linear Taguchi profiling
    Besseris, George J.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 200
  • [36] Comparison of non-linear models to describe the growth in the Andalusian turkey breed
    Arando, A.
    Gonzalez-Ariza, A.
    Lupi, T. M.
    Nogales, S.
    Leon, J. M.
    Navas-Gonzalez, F. J.
    Delgado, J., V
    Camacho, M. E.
    ITALIAN JOURNAL OF ANIMAL SCIENCE, 2021, 20 (01) : 1156 - 1167
  • [37] Fast and Accurate Non-Linear Time-Domain Modeling of Synchronous Machines
    Vukotic, Mario
    Diwoky, Franz
    Mohr, Martin
    Miljavec, Damijan
    IEEE ACCESS, 2025, 13 : 26289 - 26303
  • [38] Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data
    Montoye, Alexander H. K.
    Begum, Munni
    Henning, Zachary
    Pfeiffer, Karin A.
    PHYSIOLOGICAL MEASUREMENT, 2017, 38 (02) : 343 - 357
  • [39] Experimental validation of a Non-linear Robust Controller for DC-DC boost converters
    Markou, Achilleas
    Palaiogiannis, Foivos
    Soldatos, Argiris
    Hatziargyriou, Nikos
    2017 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS (EE), 2017,
  • [40] Robust transmission design for active IRS-aided multiuser MIMO cognitive radio systems with non-linear energy harvesting models
    Quyet, Pham Van
    Kha, Ha Hoang
    TELECOMMUNICATION SYSTEMS, 2024, 86 (01) : 155 - 171