Fast and robust quantification of uncertainty in non-linear diffusion MRI models

被引:1
|
作者
Harms, R. L. [1 ]
Fritz, F. J. [1 ]
Schoenmakers, S. [1 ]
Roebroeck, A. [1 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, Maastricht, Netherlands
基金
欧洲研究理事会;
关键词
Uncertainty estimates; Variances; Diffusion MRI; Microstructure; Fisher Information Matrix (FIM); Cramer Rao Lower Bound (CRLB); ORIENTATION DISPERSION; FIBER ORIENTATION; WILD BOOTSTRAP; OPTIMIZATION; FRAMEWORK; DENSITY; ACCELERATION; PARAMETERS; PRECISION; INFERENCE;
D O I
10.1016/j.neuroimage.2023.120496
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and nonlinear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Robust face recognition via non-linear correlation filter bank
    Taheri, Motahareh
    IET IMAGE PROCESSING, 2018, 12 (03) : 408 - 415
  • [22] Optimal design of experiments for non-linear response surface models
    Huang, Yuanzhi
    Gilmour, Steven G.
    Mylona, Kalliopi
    Goos, Peter
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (03) : 623 - 640
  • [23] A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis
    Dikaios, Nikolaos
    Atkinson, David
    Tudisca, Chiara
    Purpura, Pierpaolo
    Forster, Martin
    Ahmed, Hashim
    Beale, Timothy
    Emberton, Mark
    Punwani, Shonit
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2017, 56 : 1 - 10
  • [24] Hadron production in non-linear relativistic mean field models
    Chiapparini, M.
    Bracco, M. E.
    Delfino, A.
    Malheiro, M.
    Menezes, D. P.
    Providencia, C.
    NUCLEAR PHYSICS A, 2009, 826 (1-2) : 178 - 189
  • [25] Conditional Non-parametric Bootstrap for Non-linear Mixed Effect Models
    Comets, Emmanuelle
    Rodrigues, Christelle
    Jullien, Vincent
    Ursino, Moreno
    PHARMACEUTICAL RESEARCH, 2021, 38 (06) : 1057 - 1066
  • [26] Fast and robust NIRS-based characterization of raw organic waste: Using non-linear methods to handle water effects
    Mallet, Alexandre
    Charnier, Cyrille
    Latrille, Eric
    Bendoula, Ryad
    Roger, Jean-Michel
    Steyer, Jean-Philippe
    WATER RESEARCH, 2022, 227
  • [27] AUA-dE: An Adaptive Uncertainty Guided Attention for Diffusion MRI Models Estimation
    Zheng, Tianshu
    Ba, Ruicheng
    Wang, Xiaoli
    Ye, Chuyang
    Wu, Dan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII, 2023, 14227 : 142 - 151
  • [28] A framework for linear and non-linear registration of diffusion-weighted MRIs using angular interpolation
    Duarte-Carvajalino, Julio M.
    Sapiro, Guillermo
    Harel, Noam
    Lenglet, Christophe
    FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [29] An integer optimization algorithm for robust identification of non-linear gene regulatory networks
    Chemmangattuvalappil, Nishanth
    Task, Keith
    Banerjee, Ipsita
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [30] Fast Blind Equalization Using Bounded Non-Linear Function With Non-Gaussian Noise
    Ma, Jitong
    Qiu, Tianshuang
    Tian, Quan
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1812 - 1815