Fast and robust quantification of uncertainty in non-linear diffusion MRI models

被引:1
|
作者
Harms, R. L. [1 ]
Fritz, F. J. [1 ]
Schoenmakers, S. [1 ]
Roebroeck, A. [1 ]
机构
[1] Maastricht Univ, Fac Psychol & Neurosci, Dept Cognit Neurosci, Maastricht, Netherlands
基金
欧洲研究理事会;
关键词
Uncertainty estimates; Variances; Diffusion MRI; Microstructure; Fisher Information Matrix (FIM); Cramer Rao Lower Bound (CRLB); ORIENTATION DISPERSION; FIBER ORIENTATION; WILD BOOTSTRAP; OPTIMIZATION; FRAMEWORK; DENSITY; ACCELERATION; PARAMETERS; PRECISION; INFERENCE;
D O I
10.1016/j.neuroimage.2023.120496
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and nonlinear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bayesian uncertainty quantification in linear models for diffusion MRI
    Sjolund, Jens
    Eklund, Anders
    Ozarslan, Evren
    Herberthson, Magnus
    Bankestad, Maria
    Knutsson, Hans
    NEUROIMAGE, 2018, 175 : 272 - 285
  • [2] Robust and Fast Markov Chain Monte Carlo Sampling of Diffusion MRI Microstructure Models
    Harms, Robbert L.
    Roebroeck, Alard
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [3] Robust and fast nonlinear optimization of diffusion MRI microstructure models
    Harms, R. L.
    Fritz, F. J.
    Tobisch, A.
    Goebel, R.
    Roebroeck, A.
    NEUROIMAGE, 2017, 155 : 82 - 96
  • [4] Design of robust control Lyapunov function for non-linear affine systems with uncertainty
    Yang, Y.
    Lee, J. M.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (14) : 2248 - 2256
  • [5] Rapid uncertainty quantification for non-linear and stochastic wind excited structures: a metamodeling approach
    Chuang, Wei-Chu
    Spence, Seymour M. J.
    MECCANICA, 2019, 54 (09) : 1327 - 1338
  • [6] Non-linear models for extremal dependence
    Mhalla, Linda
    Chavez-Demoulin, Valerie
    Naveau, Philippe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 159 : 49 - 66
  • [7] Neural orientation distribution fields for estimation and uncertainty quantification in diffusion MRI
    Consagra, William
    Ning, Lipeng
    Rathi, Yogesh
    MEDICAL IMAGE ANALYSIS, 2024, 93
  • [8] Concurrent multiresponse non-linear screening: Robust profiling of webpage performance
    Besseris, George J.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 241 (01) : 161 - 176
  • [9] Parameter identification and uncertainty quantification of a non-linear pump-turbine governing system based on the differential evolution adaptive Metropolis algorithm
    Zhang, Chu
    Peng, Tian
    Zhou, Jianzhong
    Nazir, Muhammad Shahzad
    IET RENEWABLE POWER GENERATION, 2021, 15 (02) : 342 - 353
  • [10] A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI
    Consagra, William
    Ning, Lipeng
    Rathi, Yogesh
    MEDICAL IMAGE ANALYSIS, 2025, 102