Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery

被引:3
作者
Qian, Xiaoning [1 ,3 ]
Yoon, Byung-Jun [1 ,3 ]
Arroyave, Raymundo [2 ]
Qian, Xiaofeng [2 ]
Dougherty, Edward R. [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[3] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
来源
PATTERNS | 2023年 / 4卷 / 11期
基金
美国国家科学基金会;
关键词
PRIOR DISTRIBUTIONS; MODEL SELECTION; OBJECTIVE COST; INFORMATION; NETWORKS; FRAMEWORK; PRIORS; REGRESSION; SYSTEMS; NOISE;
D O I
10.1016/j.patter.2023.100863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-throughput screening, to one that builds on knowledge-driven advanced informatics techniques enabled by the latest advances in signal processing and machine learning. In this review, we discuss the major research issues that need to be addressed to expedite this transformation along with the salient challenges involved. We especially focus on Bayesian signal processing and machine learning schemes that are uncertainty aware and physics informed for knowledge-driven learning, robust optimization, and efficient objective-driven experimental design.
引用
收藏
页数:20
相关论文
共 156 条
  • [11] Berger J.O., 1985, STAT DECISION THEORY, V2nd ed., P1, DOI DOI 10.1007/978-1-4757-4286-2
  • [12] Objective Priors for Discrete Parameter Spaces
    Berger, James O.
    Bernardo, Jose M.
    Sun, Dongchu
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (498) : 636 - 648
  • [13] BERNARDO JM, 1979, J R STAT SOC B, V41, P113
  • [14] Bertsimas D, 2020, J MACH LEARN RES, V21
  • [15] Betts JT, 2010, ADV DES CONTROL, P1, DOI 10.1137/1.9780898718577
  • [16] Bishop C. M., 2007, Pattern Recognition and Machine Learning Information Science and Statistics, V1st
  • [17] Experimental Design via Generalized Mean Objective Cost of Uncertainty
    Boluki, Shahin
    Qian, Xiaoning
    Dougherty, Edward R.
    [J]. IEEE ACCESS, 2019, 7 : 2223 - 2230
  • [18] Constructing Pathway-Based Priors within a Gaussian Mixture Model for Bayesian Regression and Classification
    Boluki, Shahin
    Esfahani, Mohammad Shahrokh
    Qian, Xiaoning
    Dougherty, Edward R.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (02) : 524 - 537
  • [19] Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors
    Boluki, Shahin
    Esfahani, Mohammad Shahrokh
    Qian, Xiaoning
    Dougherty, Edward R.
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [20] Box G.E. P., 1992, Bayesian Inference in statistical analysis, DOI DOI 10.1002/9781118033197