Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery

被引:3
作者
Qian, Xiaoning [1 ,3 ]
Yoon, Byung-Jun [1 ,3 ]
Arroyave, Raymundo [2 ]
Qian, Xiaofeng [2 ]
Dougherty, Edward R. [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[3] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
来源
PATTERNS | 2023年 / 4卷 / 11期
基金
美国国家科学基金会;
关键词
PRIOR DISTRIBUTIONS; MODEL SELECTION; OBJECTIVE COST; INFORMATION; NETWORKS; FRAMEWORK; PRIORS; REGRESSION; SYSTEMS; NOISE;
D O I
10.1016/j.patter.2023.100863
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Significant acceleration of the future discovery of novel functional materials requires a fundamental shift from the current materials discovery practice, which is heavily dependent on trial-and-error campaigns and high-throughput screening, to one that builds on knowledge-driven advanced informatics techniques enabled by the latest advances in signal processing and machine learning. In this review, we discuss the major research issues that need to be addressed to expedite this transformation along with the salient challenges involved. We especially focus on Bayesian signal processing and machine learning schemes that are uncertainty aware and physics informed for knowledge-driven learning, robust optimization, and efficient objective-driven experimental design.
引用
收藏
页数:20
相关论文
共 156 条
  • [1] Adams B.M., 2021, SAND202012495
  • [2] Anthony C, 2015, Optimal Design, P1, DOI [10.1002/9781118445112.stat04090.pub2, DOI 10.1002/9781118445112.STAT04090.PUB2]
  • [3] A perspective on Bayesian methods applied to materials discovery and design
    Arroyave, Raymundo
    Khatamsaz, Danial
    Vela, Brent
    Couperthwaite, Richard
    Molkeri, Abhilash
    Singh, Prashant
    Johnson, Duane D.
    Qian, Xiaoning
    Srivastava, Ankit
    Allaire, Douglas
    [J]. MRS COMMUNICATIONS, 2022, 12 (06) : 1037 - 1049
  • [4] Bacon F, 2000, The New Organon, DOI [10.1017/CBO9781139164030.006, DOI 10.1017/CBO9781139164030.006]
  • [5] Barsoum MW, 2013, MAX PHASES: PROPERTIES OF MACHINABLE TERNARY CARBIDES AND NITRIDES, P1, DOI 10.1002/9783527654581
  • [6] Bazant M. Z., 2005, HDB MAT MODELING
  • [7] Bellman R., 1960, IRE T AUTOMATIC CONT, P5, DOI [DOI 10.1109/TAC.1960.6429288, 10.1109/TAC.1960.6429288]
  • [8] Sequential DOE via dynamic programming
    Ben-Gal, I
    Caramanis, M
    [J]. IIE TRANSACTIONS, 2002, 34 (12) : 1087 - 1100
  • [9] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [10] Berger J.O., 1992, BAYESIAN STAT, V4, P35