ON THE TOPOLOGICAL CATEGORY OF NEUTROSOPHIC CRISP SETS

被引:0
作者
Ozkan, Samed [1 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Dept Math, Nevsehir, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2023年 / 72卷 / 03期
关键词
Topological category; neutrosophic crisp set; separation; closedness; compactness; connectedness; URYSOHNS LEMMA; SEPARATION; CONNECTEDNESS; CLOSEDNESS; COMPACTNESS; THEOREM;
D O I
10.31801/cfsuasmas.1184273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we explicitly characterize local separation axioms as well as generic separation axioms in the topological category of neutrosophic crisp sets, and examine their mutual relationship. Moreover, we characterize several distinct notions of closedness, compactness and connectedness in NCSet, and study their relationship with each other.
引用
收藏
页码:618 / 632
页数:15
相关论文
共 30 条
[1]  
[Anonymous], 1970, Gen. topol. appl.
[2]   INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, KT .
FUZZY SETS AND SYSTEMS, 1986, 20 (01) :87-96
[3]  
Baran M, 2006, PUBL MATH-DEBRECEN, V68, P489
[4]  
BARAN M, 1992, INDIAN J PURE AP MAT, V23, P333
[5]   T-2-objects in topological categories [J].
Baran, M ;
Altindis, H .
ACTA MATHEMATICA HUNGARICA, 1996, 71 (1-2) :41-48
[6]  
Baran M, 1997, PUBL MATH-DEBRECEN, V50, P221
[7]   Compactness, perfectness, separation, minimality and closedness with respect to closure operators [J].
Baran, M .
APPLIED CATEGORICAL STRUCTURES, 2002, 10 (04) :403-415
[8]   Completely regular objects and normal objects in topological categories [J].
Baran, M .
ACTA MATHEMATICA HUNGARICA, 1998, 80 (03) :211-224
[9]  
BARAN M, 1994, INDIAN J PURE AP MAT, V25, P615
[10]  
Baran M., 1996, Math. Balkanica, V10, P39