A Variational Principle for the Metric Mean Dimension of Level Sets

被引:6
作者
Backes, Lucas [1 ]
Rodrigues, Fagner B. [1 ]
机构
[1] Univ Fed Rio Grande Do Sul, Dept Matemat, BR-91509900 Porto Alegre, Brazil
关键词
Metric mean dimenesion; variational principle; level sets; TOPOLOGICAL-ENTROPY; PROPERTY;
D O I
10.1109/TIT.2023.3284613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a variational principle for the unpper and lower metric mean dimension of level sets {x is an element of X : limn(n -> infinity) 1/n Sigma(n-1)(j=0) phi(f(j)(x)) = alpha} associated to continuous potentials phi : X -> R and continuous dynamics f : X -> X defined on compact metric spaces and exhibiting the specification property. This result relates the upper and lower metric mean dimension of the above mentioned sets with growth rates of measure-theoretic entropy of partitions decreasing in diameter associated to some special measures. Moreover, we present several examples to which our result may be applied to. Similar results were previously known for the topological entropy and for the topological pressure.
引用
收藏
页码:5485 / 5496
页数:12
相关论文
共 39 条
[21]  
Katok A., 1995, INTRO MODERN THEORY
[22]  
Katok A., 1980, Inst. Hautes Etudes Sci. Publ. Math, P137, DOI DOI 10.1007/BF02684777
[23]   Mean topological dimension [J].
Lindenstrauss, E ;
Weiss, B .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 115 (1) :1-24
[24]   From Rate Distortion Theory to Metric Mean Dimension: Variational Principle [J].
Lindenstrauss, Elon ;
Tsukamoto, Masaki .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) :3590-3609
[25]   A MULTIFRACTAL FORMALISM [J].
OLSEN, L .
ADVANCES IN MATHEMATICS, 1995, 116 (01) :82-196
[26]  
Pesin Y.B., 1997, CHIC LEC M
[27]  
Pollicott M., 1998, DYNAMICAL SYSTEMS ER
[28]   Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems [J].
Rodrigues, Fagner B. ;
Acevedo, Jeovanny Muentes .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (04) :697-723
[29]   On Variational Principles for Metric Mean Dimension [J].
Shi, Ruxi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) :4282-4288
[30]  
Shi Y, 2023, Arxiv, DOI arXiv:2111.05477