A Variational Principle for the Metric Mean Dimension of Level Sets

被引:6
作者
Backes, Lucas [1 ]
Rodrigues, Fagner B. [1 ]
机构
[1] Univ Fed Rio Grande Do Sul, Dept Matemat, BR-91509900 Porto Alegre, Brazil
关键词
Metric mean dimenesion; variational principle; level sets; TOPOLOGICAL-ENTROPY; PROPERTY;
D O I
10.1109/TIT.2023.3284613
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a variational principle for the unpper and lower metric mean dimension of level sets {x is an element of X : limn(n -> infinity) 1/n Sigma(n-1)(j=0) phi(f(j)(x)) = alpha} associated to continuous potentials phi : X -> R and continuous dynamics f : X -> X defined on compact metric spaces and exhibiting the specification property. This result relates the upper and lower metric mean dimension of the above mentioned sets with growth rates of measure-theoretic entropy of partitions decreasing in diameter associated to some special measures. Moreover, we present several examples to which our result may be applied to. Similar results were previously known for the topological entropy and for the topological pressure.
引用
收藏
页码:5485 / 5496
页数:12
相关论文
共 39 条
[1]  
Acevedo JDM, 2024, Arxiv, DOI arXiv:2207.11873
[2]  
[Anonymous], 1999, MATH PHYS ANAL GEOME
[3]  
[Anonymous], 1997, J. Dyn. Control Syst.
[4]   On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity [J].
Barreira, L ;
Pesin, Y ;
Schmeling, J .
CHAOS, 1997, 7 (01) :27-38
[5]   Variational principles and mixed multifractal spectra [J].
Barreira, L ;
Saussol, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) :3919-3944
[6]   The specification property for backward shifts [J].
Bartoll, Salud ;
Martinez-Gimenez, Felix ;
Peris, Alfredo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) :599-605
[7]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[8]   Expansivity and shadowing in linear dynamics [J].
Bernardes, Nilson C., Jr. ;
Cirilo, Patricia R. ;
Darji, Udayan B. ;
Messaoudi, Ali ;
Pujals, Enrique R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) :796-816
[9]  
Brin M., 2004, Introduction to Dynamical Systems
[10]   Generic homeomorphisms have full metric mean dimension [J].
Carvalho, Maria ;
Rodrigues, Fagner B. ;
Varandas, Paulo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) :40-64