Highly Efficient and Robust Ternary All-Polymer Solar Cells Achieved by Electro-Active Polymer Compatibilizers

被引:8
|
作者
Kim, Geon-U [1 ]
Choi, Changeun [2 ,3 ]
Jeong, Dahyun [1 ]
Kim, Dong Jun [4 ]
Phan, Tan Ngoc-Lan [1 ]
Song, Seunghoon [2 ,3 ]
Park, Jinseok [1 ]
Kim, Taek-Soo [4 ]
Kim, Yun-Hi [5 ,6 ]
Kim, Bumjoon J. [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, Jinju 52828, South Korea
[3] Gyeongsang Natl Univ, ERI, Jinju 52828, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea
[5] Gyeongsang Natl Univ, Dept Chem, Jinju 52828, South Korea
[6] Gyeongsang Natl Univ, RIGET, Jinju 52828, South Korea
基金
新加坡国家研究基金会;
关键词
all-polymer solar cells; electro-active compatibilizer; intrinsically stretchable polymer solar cells; mechanical robustness; ternary all-polymer solar cells; COPOLYMER COMPATIBILIZERS; 17-PERCENT EFFICIENCY; MECHANICAL-PROPERTIES; BLEND MORPHOLOGY; PERFORMANCE; ACCEPTORS;
D O I
10.1002/aenm.202302125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-polymer solar cells (all-PSCs), using polymerized non-fullerene acceptors (PNFAs), have shown promise in improving device stabilities compared to small-molecular acceptor-based PSCs. However, low mixing entropy between polymer donors (PDs) and PNFAs hampers the development of optimized blend morphology. Herein, this study develops efficient conjugated polymers that serve as interfacial compatibilizers between host PD and PNFA. Ternary all-polymer blends containing the compatibilizer demonstrate improved blend morphology with strengthened interfaces, resulting in better photovoltaic properties and thermal/mechanical stabilities. In detail, the power conversion efficiency (PCE) increases from 15.4 to 17.1% upon the addition of the compatibilizer. Moreover, the devices based on the ternary blend enable good thermal stability, retaining 90% of the initial PCE after 96 h at 125 & DEG;C. Additionally, the mechanical properties are improved; the cohesive fracture energy (Gc) of 2.6 J m-2 and crack onset strain (COS) of 20.4% of the ternary blend outperform those of the binary blend (Gc = 1.1 J m-2 and COS = 16.5%). Resultingly, the stretchable PSCs based on the ternary blend exhibit an excellent PCE of 13.7% and stretchability with a strain at PCE80% of 35%. Efficient and stable all-polymer solar cells are demonstrated by introducing electro-active polymeric compatibilizers into all-polymer blends. Complementary light absorption and cascade energy level alignment achieved by the compatibilizers improve photovoltaic performance. Moreover, the compatibilizers induce blend morphologies with sufficient intermixed domains and strengthen donor/acceptor interfaces, thereby enhancing thermal, photo, and mechanical stabilities.image
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Efficient All-Polymer Solar Cells with Sequentially Processed Active Layers
    Zhao, Chaoyue
    Huang, Hui
    Wang, Lihong
    Zhang, Guoping
    Lu, Guanyu
    Yu, Han
    Lu, Guanghao
    Han, Yulai
    Qiu, Mingxia
    Li, Shunpu
    Zhang, Guangye
    POLYMERS, 2022, 14 (10)
  • [12] A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells
    Hui Chen
    Yikun Guo
    Pengjie Chao
    Longzhu Liu
    Wei Chen
    Dahui Zhao
    Feng He
    ScienceChina(Chemistry), 2019, 62 (02) : 238 - 244
  • [13] A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells
    Hui Chen
    Yikun Guo
    Pengjie Chao
    Longzhu Liu
    Wei Chen
    Dahui Zhao
    Feng He
    Science China Chemistry, 2019, 62 : 238 - 244
  • [14] Efficient All-Polymer Solar Cells Enabled by Interface Engineering
    Zhang, Guoping
    Wang, Lihong
    Zhao, Chaoyue
    Wang, Yajie
    Hu, Ruiyu
    Che, Jiaxu
    He, Siying
    Chen, Wei
    Cao, Leifeng
    Luo, Zhenghui
    Qiu, Mingxia
    Li, Shunpu
    Zhang, Guangye
    POLYMERS, 2022, 14 (18)
  • [15] 8.0% Efficient all-polymer solar cells based on novel starburst polymer acceptors
    Li, Kang
    Xie, Ruihao
    Zhong, Wenkai
    Lin, Kaiwen
    Ying, Lei
    Huang, Fei
    Cao, Yong
    SCIENCE CHINA-CHEMISTRY, 2018, 61 (05) : 576 - 583
  • [16] The Phase Separation Control in All-Polymer Solar Cells
    Liang, Qiuju
    Miao, Zongcheng
    Liu, Xingpeng
    Liu, Zefeng
    Xu, Zhenhui
    Zhang, Yan
    Zhang, Zhe
    Zhai, Wenxuan
    Song, Chunpeng
    Xin, Jingming
    Yin, Xipeng
    Liu, Jiangang
    SUSMAT, 2025,
  • [17] Polythiophene Derivatives for Efficient All-Polymer Solar Cells
    An, Mingwei
    Bai, Qingqing
    Jeong, Sang Young
    Ding, Jianwei
    Zhao, Chaoyue
    Liu, Bin
    Liang, Qiming
    Wang, Yimei
    Zhang, Guangye
    Woo, Han Young
    Qiu, Xiaohui
    Niu, Li
    Guo, Xugang
    Sun, Huiliang
    ADVANCED ENERGY MATERIALS, 2023, 13 (30)
  • [18] Linker Unit Modulation of Polymer Acceptors Enables Highly Efficient Air-Processed All-Polymer Solar Cells
    Kim, Ha Kyung
    Yu, Han
    Pan, Mingao
    Shi, Xiaoyu
    Zhao, Heng
    Qi, Zhenyu
    Liu, Wei
    Ma, Wei
    Yan, He
    Chen, Shangshang
    ADVANCED SCIENCE, 2022, 9 (25)
  • [19] Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors
    Li, Yuxiang
    Jia, Zhiyan
    Zhang, Qilin
    Wu, Ziang
    Qin, Hongmei
    Yang, Jianye
    Wen, Shuguang
    Woo, Han Young
    Ma, Wanli
    Yang, Renqiang
    Yuan, Jianyu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 33028 - 33038
  • [20] Highly Efficient All-Polymer Solar Cells Enabled by Random Ternary Copolymer Acceptors with High Tolerance on Molar Ratios
    Wu, Yao
    Wu, Qiang
    Wang, Wei
    Sun, Rui
    Min, Jie
    SOLAR RRL, 2020, 4 (11)