Effect of a guide field on the turbulence like properties of magnetic reconnection

被引:8
作者
Adhikari, S. [1 ,2 ]
Shay, M. A. [1 ,3 ]
Parashar, T. N. [1 ,4 ]
Matthaeus, W. H. [1 ,3 ]
Pyakurel, P. S. [5 ]
Stawarz, J. E. [6 ]
Eastwood, J. P. [7 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[3] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA
[4] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6012, New Zealand
[5] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[6] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, England
[7] Imperial Coll London, Dept Phys, London SW7 2AZ, England
关键词
KARMAN-HOWARTH EQUATION; MHD TURBULENCE; DISSIPATION; ENERGY; ANISOTROPY; MAGNETOHYDRODYNAMICS; STATISTICS; DEPENDENCE; TRANSITION; REGION;
D O I
10.1063/5.0150929
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The effect of an external guide field on the turbulence-like properties of magnetic reconnection is studied using five different 2.5D kinetic particle-in-cell (PIC) simulations. The magnetic energy spectrum is found to exhibit a slope of approximately - 5 / 3 in the inertial range, independent of the guide field. On the contrary, the electric field spectrum in the inertial range steepens more with the guide field and approaches a slope of - 5 / 3. In addition, spectral analysis of the different terms of the generalized Ohm's law is performed and found to be consistent with PIC simulations of turbulence and MMS observations. Finally, the guide field effect on the energy transfer behavior is examined using the von Karman-Howarth (vKH) equation based on incompressible Hall-MHD. The general characteristics of the vKH equation with constant rate of energy transfer in the inertial range are consistent in all the simulations. This suggests that the qualitative behavior of energy spectrum and energy transfer in reconnection are similar to that of turbulence, indicating that reconnection fundamentally involves an energy cascade.
引用
收藏
页数:14
相关论文
共 74 条
[31]   Multi-scale structure of the electron diffusion region [J].
Karimabadi, H. ;
Daughton, W. ;
Scudder, J. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (13)
[32]  
Kolmogoroff AN, 1941, CR ACAD SCI URSS, V32, P16
[33]   Local Regimes of Turbulence in 3D Magnetic Reconnection [J].
Lapenta, G. ;
Pucci, F. ;
Goldman, M. V. ;
Newman, D. L. .
ASTROPHYSICAL JOURNAL, 2020, 888 (02)
[34]   Self-feeding turbulent magnetic reconnection on macroscopic scales [J].
Lapenta, Giovanni .
PHYSICAL REVIEW LETTERS, 2008, 100 (23)
[35]   Turbulent reconnection and its implications [J].
Lazarian, A. ;
Eyink, G. ;
Vishniac, E. ;
Kowal, G. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2041)
[36]   Reconnection in a weakly stochastic field [J].
Lazarian, A ;
Vishniac, ET .
ASTROPHYSICAL JOURNAL, 1999, 517 (02) :700-718
[37]   3D turbulent reconnection: Theory, tests, and astrophysical implications [J].
Lazarian, Alex ;
Eyink, Gregory L. ;
Jafari, Amir ;
Kowal, Grzegorz ;
Li, Hui ;
Xu, Siyao ;
Vishniac, Ethan T. .
PHYSICS OF PLASMAS, 2020, 27 (01)
[38]   Observational constraints on the dynamics of the interplanetary magnetic field dissipation range [J].
Leamon, RJ ;
Smith, CW ;
Ness, NF ;
Matthaeus, WH ;
Wong, HK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A3) :4775-4787
[39]   Identification of Intermittent Multifractal Turbulence in Fully Kinetic Simulations of Magnetic Reconnection [J].
Leonardis, E. ;
Chapman, S. C. ;
Daughton, W. ;
Roytershteyn, V. ;
Karimabadi, H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (20)
[40]   Weibel instability and structures of magnetic island in anti-parallel collisionless magnetic reconnection [J].
Lu, San ;
Lu, Quanming ;
Shao, Xi ;
Yoon, Peter H. ;
Wang, Shui .
PHYSICS OF PLASMAS, 2011, 18 (07)