Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopy

被引:3
作者
Larsen, Matthew Helmi Leth [1 ]
Lomholdt, William Bang [2 ]
Valencia, Cuauhtemoc Nunez [1 ]
Hansen, Thomas W. [2 ]
Schiotz, Jakob [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, Computat Atom Scale Mat Design CAMD, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Natl Ctr Nano Fabricat & Characterizat, DK-2800 Lyngby, Denmark
关键词
Machine learning; Modulation transfer function; Signal; -to; -noise; Beam damage; CCD CAMERAS; DETECTORS; ATOMS;
D O I
10.1016/j.ultramic.2023.113803
中图分类号
TH742 [显微镜];
学科分类号
摘要
Motivated by the need for low electron dose transmission electron microscopy imaging, we report the optimal frame dose (i.e. e-/& ANGS;2) range for object detection and segmentation tasks with neural networks. The MSD-net architecture shows promising abilities over the industry standard U-net architecture in generalising to frame doses below the range included in the training set, for both simulated and experimental images. It also presents a heightened ability to learn from lower dose images. The MSD-net displays mild visibility of a Au nanoparticle at 20-30 e- /& ANGS;2, and converges at 200 e- /& ANGS;2 where a full segmentation of the nanoparticle is achieved. Between 30 and 200 e-/& ANGS;2 object detection applications are still possible. This work also highlights the importance of modelling the modulation transfer function when training with simulated images for applications on images acquired with scintillator based detectors such as the Gatan Oneview camera. A parametric form of the modulation transfer function is applied with varying ranges of parameters, and the effects on low electron dose segmentation is presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Exploring semiconductor quantum dots and wires by high resolution electron microscopy
    Molina, S. I.
    Galindo, P. L.
    Gonzalez, L.
    Ripalda, J. M.
    Varela, M.
    Pennycook, S. J.
    16TH INTERNATIONAL CONFERENCE ON MICROSCOPY OF SEMICONDUCTING MATERIALS, 2010, 209
  • [42] High-Resolution Polar Network for Object Detection in Remote Sensing Images
    He, Xu
    Ma, Shiping
    He, Linyuan
    Ru, Le
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] Resolution of Virtual Depth Sectioning from Four-Dimensional Scanning Transmission Electron Microscopy
    Terzoudis-Lumsden, E. W. C.
    Petersen, T. C.
    Brown, H. G.
    Pelz, P. M.
    Ophus, C.
    Findlay, S. D.
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (04) : 1409 - 1421
  • [44] Digital differential interference contrast autofocus for high-resolution oil-immersion microscopy
    Shen, Feilmo
    Hodgson, Louis
    Price, Jeffrey H.
    Hahn, Klaus M.
    CYTOMETRY PART A, 2008, 73A (07) : 658 - 666
  • [45] An extended model of electrons: experimental evidence from high-resolution scanning tunneling microscopy
    Hofer, Werner A.
    EMERQUM 11: EMERGENT QUANTUM MECHANICS 2011 (HEINZ VON FOERSTER CONGRESS), 2012, 361
  • [46] Magnetically confined electron beam system for high resolution electron transmission-beam experiments
    Lozano, A. I.
    Oller, J. C.
    Krupa, K.
    Da Silva, F. Ferreira
    Limao-Vieira, P.
    Blanco, F.
    Munoz, A.
    Colmenares, R.
    Garcia, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (06)
  • [47] Convocals: A Convolutional Neural Network To Predict Symptoms And Major Secondary Cardiovascular Events Based On High-resolution Scanned Histological Slides
    Cisternino, Francesco
    Song, Yipei
    de Borst, Gert Jan
    Mekke, Joost
    de Kleijn, Dominique P.
    Peters, Tim
    Westerman, Roderick
    Pasterkamp, Gerard
    Vink, Aryan
    van der Laan, Sander W.
    Miller, Clint L.
    Glastonbury, Craig
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2023, 43
  • [48] Experimental evaluation of convolutional neural network-based inter-crystal scattering recovery for high-resolution PET detectors
    Lee, Seungeun
    Lee, Jae Sung
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (09)
  • [49] Noise estimation model development using high-resolution transportation and land use regression
    Harouvi, Omer
    Ben-Elia, Eran
    Factor, Roni
    de Hoogh, Kees
    Kloog, Itai
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2018, 28 (06) : 559 - 567
  • [50] Fourier analysis of multi-scale neural networks implemented for high-resolution X-ray radiography
    Kim, Jinwoo
    Oh, Seokwon
    Kim, Ho Kyung
    NDT & E INTERNATIONAL, 2023, 139