Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopy

被引:3
作者
Larsen, Matthew Helmi Leth [1 ]
Lomholdt, William Bang [2 ]
Valencia, Cuauhtemoc Nunez [1 ]
Hansen, Thomas W. [2 ]
Schiotz, Jakob [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, Computat Atom Scale Mat Design CAMD, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Natl Ctr Nano Fabricat & Characterizat, DK-2800 Lyngby, Denmark
关键词
Machine learning; Modulation transfer function; Signal; -to; -noise; Beam damage; CCD CAMERAS; DETECTORS; ATOMS;
D O I
10.1016/j.ultramic.2023.113803
中图分类号
TH742 [显微镜];
学科分类号
摘要
Motivated by the need for low electron dose transmission electron microscopy imaging, we report the optimal frame dose (i.e. e-/& ANGS;2) range for object detection and segmentation tasks with neural networks. The MSD-net architecture shows promising abilities over the industry standard U-net architecture in generalising to frame doses below the range included in the training set, for both simulated and experimental images. It also presents a heightened ability to learn from lower dose images. The MSD-net displays mild visibility of a Au nanoparticle at 20-30 e- /& ANGS;2, and converges at 200 e- /& ANGS;2 where a full segmentation of the nanoparticle is achieved. Between 30 and 200 e-/& ANGS;2 object detection applications are still possible. This work also highlights the importance of modelling the modulation transfer function when training with simulated images for applications on images acquired with scintillator based detectors such as the Gatan Oneview camera. A parametric form of the modulation transfer function is applied with varying ranges of parameters, and the effects on low electron dose segmentation is presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Influence of Hyperparameter in Deep Convolution Neural Network Using High-Resolution Satellite Data
    Soni, Ashish
    Koner, Radhakanta
    Villuri, Vasanta Govind Kumar
    APPLICATIONS OF GEOMATICS IN CIVIL ENGINEERING, 2020, 33 : 489 - 500
  • [22] Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation
    Qu, Jiao
    Zhang, Wenjing
    Shu, Xin
    Wang, Ying
    Wang, Lituan
    Xu, Mengyuan
    Yao, Li
    Hu, Na
    Tang, Biqiu
    Zhang, Lei
    Lui, Su
    EUROPEAN RADIOLOGY, 2023, 33 (10) : 6648 - 6658
  • [23] Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation
    Jiao Qu
    Wenjing Zhang
    Xin Shu
    Ying Wang
    Lituan Wang
    Mengyuan Xu
    Li Yao
    Na Hu
    Biqiu Tang
    Lei Zhang
    Su Lui
    European Radiology, 2023, 33 : 6648 - 6658
  • [24] Application of Super-Resolution Techniques to Transmission Electron Microscopy Images
    Barcena-Gonzalez, G.
    Guerrero-Lebrero, M. P.
    Guerrero, E.
    Reyes, D. F.
    Nunez-Moraleda, B.
    Rivas-Sanchez, M.
    Yanez, A.
    Gonzalez, D.
    Galindo, P. L.
    APPLICATIONS OF INTELLIGENT SYSTEMS, 2018, 310 : 42 - 49
  • [25] Quantifying transmission electron microscopy irradiation effects using two-dimensional materials
    Susi, Toma
    Meyer, Jannik C.
    Kotakoski, Jani
    NATURE REVIEWS PHYSICS, 2019, 1 (06) : 397 - 405
  • [26] High-resolution imaging in acoustic microscopy using deep learning
    Banerjee, Pragyan
    Milind Akarte, Shivam
    Kumar, Prakhar
    Shamsuzzaman, Muhammad
    Butola, Ankit
    Agarwal, Krishna
    Prasad, Dilip K.
    Melandso, Frank
    Habib, Anowarul
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [27] Periodic Cation Segregation in Cs0.44[Nb2.54W2.46O14] Quantified by High-Resolution Scanning Transmission Electron Microscopy
    Heidelmann, Markus
    Barthel, Juri
    Cox, Gerhard
    Weirich, Thomas E.
    MICROSCOPY AND MICROANALYSIS, 2014, 20 (05) : 1453 - 1462
  • [28] Reconstruction of high-resolution atomic force microscopy measurements from fast-scan data using a Noise2Noise algorithm
    Natinsky, Eva
    Khan, Ryan M.
    Cullinan, Michael
    Dingreville, Remi
    MEASUREMENT, 2024, 227
  • [29] Local Bi ordering in MOVPE grown Ga(As,Bi) investigated by high resolution scanning transmission electron microscopy
    Beyer, Andreas
    Knaub, Nikolai
    Rosenow, Phil
    Jandieri, Kakhaber
    Ludewig, Peter
    Bannow, Lars
    Koch, Stephan W.
    Tonner, Ralf
    Volz, Kerstin
    APPLIED MATERIALS TODAY, 2017, 6 : 22 - 28
  • [30] Adaptive Feedback Convolutional-Neural-Network-Based High-Resolution Reflection-Waveform Inversion
    Wu, Yulang
    McMechan, George A.
    Wang, Yanfei
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (06)