Improved Training of Physics-Informed Neural Networks with Model Ensembles

被引:7
|
作者
Haitsiukevich, Katsiaryna [1 ]
Ilin, Alexander [1 ]
机构
[1] Aalto Univ, Espoo, Finland
基金
芬兰科学院;
关键词
Label propagation; Model ensembles; Partial differential equations; Physics-informed neural networks;
D O I
10.1109/IJCNN54540.2023.10191822
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning the solution of partial differential equations (PDEs) with a neural network is an attractive alternative to traditional solvers due to its elegance, greater flexibility and the ease of incorporating observed data. However, training such physics-informed neural networks (PINNs) is notoriously difficult in practice since PINNs often converge to wrong solutions. In this paper, we address this problem by training an ensemble of PINNs. Our approach is motivated by the observation that individual PINN models find similar solutions in the vicinity of points with targets (e.g., observed data or initial conditions) while their solutions may substantially differ farther away from such points. Therefore, we propose to use the ensemble agreement as the criterion for gradual expansion of the solution interval, that is including new points for computing the loss derived from differential equations. Due to the flexibility of the domain expansion, our algorithm can easily incorporate measurements in arbitrary locations. In contrast to the existing PINN algorithms with time-adaptive strategies, the proposed algorithm does not need a predefined schedule of interval expansion and it treats time and space equally. We experimentally show that the proposed algorithm can stabilize PINN training and yield performance competitive to the recent variants of PINNs trained with time adaptation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [42] Physics-Informed Neural Differential Equation Model
    Chen, Haowei
    Guo, Yu
    Yuan, Zhaolin
    Wang, Baojie
    Ban, Xiaojuan
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (04): : 90 - 97
  • [43] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30
  • [44] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176
  • [45] Boussinesq equation solved by the physics-informed neural networks
    Ruozhou Gao
    Wei Hu
    Jinxi Fei
    Hongyu Wu
    Nonlinear Dynamics, 2023, 111 : 15279 - 15291
  • [46] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [47] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [48] Physics-Informed Neural Networks for Heat Transfer Problems
    Cai, Shengze
    Wang, Zhicheng
    Wang, Sifan
    Perdikaris, Paris
    Karniadakis, George E. M.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (06):
  • [49] Physics-Informed Neural Networks for Cardiac Activation Mapping
    Costabal, Francisco Sahli
    Yang, Yibo
    Perdikaris, Paris
    Hurtado, Daniel E.
    Kuhl, Ellen
    FRONTIERS IN PHYSICS, 2020, 8
  • [50] PHYSICS-INFORMED NEURAL NETWORKS FOR MODELING LINEAR WAVES
    Sheikholeslami, Mohammad
    Salehi, Saeed
    Mao, Wengang
    Eslamdoost, Arash
    Nilsson, Hakan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 9, 2024,