Generalized UH-stability of a nonlinear fractional coupling (p1,p2)-Laplacian system concerned with nonsingular Atangana-Baleanu fractional calculus

被引:0
作者
Zhao, Kaihong [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Dept Math, Taizhou 318000, Zhejiang, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2023年 / 2023卷 / 01期
关键词
Coupling Laplacian system; AB-fractional calculus; Existence and uniqueness; Generalized UH-stability; BOUNDARY-VALUE PROBLEM; HYERS-ULAM STABILITY; DIFFERENTIAL-EQUATIONS; MODEL; EXISTENCE;
D O I
10.1186/s13660-023-03010-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical p-Laplace equation is one of the special and significant second-order ODEs. The fractional-order p-Laplace ODE is an important generalization. In this paper, we mainly treat with a nonlinear coupling (p(1),p(2))-Laplacian systems involving the nonsingular Atangana-Baleanu (AB) fractional derivative. In accordance with the value range of parameters p(1) and p(2), we obtain sufficient criteria for the existence and uniqueness of solution in four cases. By using some inequality techniques we further establish the generalized UH-stability for this system. Finally, we test the validity and practicality of the main results by an example.
引用
收藏
页数:16
相关论文
共 55 条
[1]   Transient responses to an infinite solid with a spherical cavity according to the MGT thermo-diffusion model with fractional derivatives without nonsingular kernels [J].
Abouelregal, Ahmed E. ;
Rayan, Alanazi ;
Mostafa, Doaa M. .
WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
[2]   A new study on the existence and stability to a system of coupled higher-order nonlinear BVP of hybrid FDEs under the p-Laplacian operator [J].
Alkhazzan, Abdulwasea ;
Al-Sadi, Wadhah ;
Wattanakejorn, Varaporn ;
Khan, Hasib ;
Sitthiwirattham, Thanin ;
Etemad, Sina ;
Rezapour, Shahram .
AIMS MATHEMATICS, 2022, 7 (08) :14187-14207
[3]   Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative [J].
Almalahi, Mohammed A. ;
Panchal, Satish K. ;
Jarad, Fahd ;
Abdo, Mohammed S. ;
Shah, Kamal ;
Abdeljawad, Thabet .
AIMS MATHEMATICS, 2022, 7 (09) :15994-16016
[4]   Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order [J].
Atangana, Abdon ;
Koca, Ilknur .
CHAOS SOLITONS & FRACTALS, 2016, 89 :447-454
[5]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[6]   Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses [J].
Dhayal, Rajesh ;
Gomez-Aguilar, J. F. ;
Torres-Jimenez, J. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (16) :3481-3495
[7]   A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay [J].
Dineshkumar, C. ;
Udhayakumar, R. ;
Vijayakumar, V. ;
Nisar, Kottakkaran Sooppy ;
Shukla, Anurag .
CHAOS SOLITONS & FRACTALS, 2022, 157
[8]   Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative [J].
Dokuyucu, Mustafa Ali ;
Baleanu, Dumitru ;
Celik, Ercan .
FILOMAT, 2018, 32 (16) :5633-5643
[9]   Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels [J].
Fernandez, Arran ;
Mohammed, Pshtiwan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) :8414-8431