Generators of symmetric polynomials in free metabelian Leibniz algebras

被引:0
作者
Ozkurt, Zeynep [1 ]
Findik, Sehmus [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkiye
关键词
Leibniz algebra; symmetric polynomial; generator;
D O I
10.1142/S0219498824502128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of characteristic zero, X-n = {x(1),..., x(n)} and R-n = {r(1),..., r(n)} be two sets of variables, Ln be the free metabelian Leibniz algebra generated by X-n, and K[R-n] be the commutative polynomial algebra generated by R-n over the base field K. Polynomials p(X-n) is an element of L-n and q(R-n) is an element of K[R-n] are called symmetric if they satisfy p(x(pi(1)),..., x(pi(n))) = p(X-n) and q(r(pi(1)),..., r(pi(n))) = q(R-n), respectively, for all pi is an element of S-n. The sets L-n(Sn) and K[R-n](Sn) of symmetric polynomials are the S-n-invariant subalgebras of L-n and K[R-n], respectively. The Leibniz subalgebra (L-n ')(Sn) = L-n(Sn) boolean AND L-n ' in the commutator ideal L-n ' of Ln is a right K[R-n](Sn)-module by the adjoint action. In this study, we provide a finite generating set for the right K[R-n](Sn)-module (L-n ')(Sn). In particular, we give free generating sets for (L-n ')(S2) and (L-3 ')(S3) as K[R-2](S2)-module and K[R-3](S3)-module, respectively.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Versal Deformations of Leibniz Algebras [J].
Fialowski, Alice ;
Mandal, Ashis ;
Mukherjee, Goutam .
JOURNAL OF K-THEORY, 2009, 3 (02) :327-358
[42]   A Characterization of Nilpotent Leibniz Algebras [J].
Alice Fialowski ;
A. Kh. Khudoyberdiyev ;
B. A. Omirov .
Algebras and Representation Theory, 2013, 16 :1489-1505
[43]   On Inner Derivations of Leibniz Algebras [J].
Patlertsin, Sutida ;
Pongprasert, Suchada ;
Rungratgasame, Thitarie .
MATHEMATICS, 2024, 12 (08)
[44]   On some "minimal" Leibniz algebras [J].
Chupordia, V. A. ;
Kurdachenko, L. A. ;
Subbotin, I. Ya. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (05)
[45]   The Nilpotent Multiplier of Leibniz Algebras [J].
Abbas Asadi ;
Mehdi Araskhan ;
Behrouz Edalatzadeh ;
Shahram Heidarian .
Bulletin of the Iranian Mathematical Society, 51 (5)
[46]   A COMMENT ON THE INTEGRATION OF LEIBNIZ ALGEBRAS [J].
Mostovoy, J. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (01) :185-194
[47]   THE LOCAL INTEGRATION OF LEIBNIZ ALGEBRAS [J].
Covez, Simon .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (01) :1-35
[48]   Deformation quantization of Leibniz algebras [J].
Dherin, Benoit ;
Wagemann, Friedrich .
ADVANCES IN MATHEMATICS, 2015, 270 :21-48
[49]   Subinvariance and ascendancy in Leibniz Algebras [J].
Groves, Emma ;
Misra, Kailash C. ;
Stitzinger, Ernie .
COMMUNICATIONS IN ALGEBRA, 2025, 53 (02) :610-616
[50]   On Classification of Filiform Leibniz Algebras [J].
Gomez, J. R. ;
Omirov, B. A. .
ALGEBRA COLLOQUIUM, 2015, 22 :757-774