Generators of symmetric polynomials in free metabelian Leibniz algebras

被引:0
作者
Ozkurt, Zeynep [1 ]
Findik, Sehmus [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkiye
关键词
Leibniz algebra; symmetric polynomial; generator;
D O I
10.1142/S0219498824502128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of characteristic zero, X-n = {x(1),..., x(n)} and R-n = {r(1),..., r(n)} be two sets of variables, Ln be the free metabelian Leibniz algebra generated by X-n, and K[R-n] be the commutative polynomial algebra generated by R-n over the base field K. Polynomials p(X-n) is an element of L-n and q(R-n) is an element of K[R-n] are called symmetric if they satisfy p(x(pi(1)),..., x(pi(n))) = p(X-n) and q(r(pi(1)),..., r(pi(n))) = q(R-n), respectively, for all pi is an element of S-n. The sets L-n(Sn) and K[R-n](Sn) of symmetric polynomials are the S-n-invariant subalgebras of L-n and K[R-n], respectively. The Leibniz subalgebra (L-n ')(Sn) = L-n(Sn) boolean AND L-n ' in the commutator ideal L-n ' of Ln is a right K[R-n](Sn)-module by the adjoint action. In this study, we provide a finite generating set for the right K[R-n](Sn)-module (L-n ')(Sn). In particular, we give free generating sets for (L-n ')(S2) and (L-3 ')(S3) as K[R-2](S2)-module and K[R-3](S3)-module, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Binary Leibniz Algebras
    N. A. Ismailov
    A. S. Dzhumadil’daev
    Mathematical Notes, 2021, 110 : 322 - 328
  • [22] On derivations of Leibniz algebras
    Misra, Kailash C.
    Patlertsin, Sutida
    Pongprasert, Suchada
    Rungratgasame, Thitarie
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (07): : 4715 - 4722
  • [23] On restricted Leibniz algebras
    Dokas, Ioannis
    Loday, Jean-Louis
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (12) : 4467 - 4478
  • [24] Complete Leibniz algebras
    Boyle, Kristen
    Misra, Kailash C.
    Stitzinger, Ernest
    JOURNAL OF ALGEBRA, 2020, 557 : 172 - 180
  • [25] On compatible Leibniz algebras
    Makhlouf, Abdenacer
    Saha, Ripan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (04)
  • [26] On the capability of Leibniz algebras
    Khmaladze, Emzar
    Kurdiani, Revaz
    Ladra, Manuel
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 271 - 279
  • [27] Binary Leibniz Algebras
    Ismailov, N. A.
    Dzhumadil'daev, A. S.
    MATHEMATICAL NOTES, 2021, 110 (3-4) : 322 - 328
  • [28] On the structure of Leibniz algebras whose subalgebras are ideals or core-free
    Chupordia, V. A.
    Kurdachenko, L. A.
    Semko, N. N.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (02): : 180 - 194
  • [29] Leibniz algebras as non-associative algebras
    Feldvoss, Jorg
    NONASSOCIATIVE MATHEMATICS AND ITS APPLICATIONS, 2019, 721 : 115 - 149
  • [30] On the representability of actions of Leibniz algebras and Poisson algebras
    Cigoli, Alan S.
    Mancini, Manuel
    Metere, Giuseppe
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (04) : 998 - 1021