Osteogenic differentiation of adipose-derived canine mesenchymal stem cells seeded in porous calcium-phosphate scaffolds

被引:2
|
作者
Herrera, David [1 ]
Lodoso-Torrecilla, Irene [2 ]
Ginebra, Maria-Pau [2 ]
Rappe, Katrin [1 ]
Franch, Jordi [1 ]
机构
[1] Autonomous Univ Barcelona, Vet Fac, Dept Anim Med & Surg, Bone Regenerat Res Grp, Cerdanyola Del Valles, Spain
[2] Univ Politecn Cataluna, Dept Mat Sci & Engn, Biomat Biomech & Tissue Engn Grp, Barcelona, Spain
关键词
canine mesenchymal stem cell; bone graft substitute; beta-tricalcium phosphate; CD90; ceramic scaffold; osteogenic differentiation; BONE-MARROW; CHRONIC OSTEOARTHRITIS; TISSUE; DOGS; CRYOPRESERVATION; BLOOD; SIZE;
D O I
10.3389/fvets.2023.1149413
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Introduction: Engineered bone graft substitutes are a promising alternative and supplement to autologous bone grafts as treatments for bone healing impairment. Advances in human medicine extend an invitation to pursue these biomimetic strategies in animal patients, substantiated by the theory that specialized scaffolds, multipotent cells, and biological cues may be combined into a bioactive implant intended for the enhancement of tissue regeneration. Methods: This proof-of-concept study was designed to evaluate and validate the feasibility of beta-tricalcium phosphate foam scaffolds seeded with canine mesenchymal stem cells derived from adipose tissue. Cell-inoculated samples and sham controls were cultured statically for 72 hours in complete growth medium to evaluate seeding capacity, while a subset of loaded scaffolds was further induced with osteogenic culture medium for 21 days. Produced implants were characterized and validated with a combination of immunofluorescence and reflection confocal microscopy, scanning electron microscopy, and polymerase chain reaction to confirm osteogenic differentiation in tridimensional-induced samples. Results: After 72 hours of culture, all inoculated scaffolds presented widespread yet heterogeneous surface seeding, distinctively congregating stem cells around pore openings. Furthermore, at 21 days of osteogenic culture conditions, robust osteoblastic differentiation of the seeded cells was confirmed by the change of cell morphology and evident deposition of extra-cellular matrix, accompanied by mineralization and scaffold remodeling; furthermore, all induced cell-loaded implants lost specific stemness immunophenotype expression and simultaneously upregulated genomic expression of osteogenic genes Osterix and Ostecalcin. Conclusions: ss-TCP bio-ceramic foam scaffolds proved to be suitable carriers and hosts of canine adipose-derived MSCs, promoting not only surface attachment and proliferation, but also demonstrating strong in-vitro osteogenic potential. Although this research provides satisfactory in-vitro validation for the conceptualization and feasibility of a canine bio-active bone implant, further testing such as patient safety, large-scale reproducibility, and quality assessment are needed for regulatory compliance in future commercial clinical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Superparamagnetic iron oxide promotes osteogenic differentiation of rat adipose-derived stem cells
    Xiao, Hai-Tao
    Wang, Lei
    Yu, Bin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (01): : 698 - 705
  • [42] Isolation, Characterization, and Differentiation Potential of Canine Adipose-Derived Stem Cells
    Vieira, N. M.
    Brandalise, V.
    Zucconi, E.
    Secco, M.
    Strauss, B. E.
    Zatz, M.
    CELL TRANSPLANTATION, 2010, 19 (03) : 279 - 289
  • [43] Effect of donor age on the proliferation and multipotency of canine adipose-derived mesenchymal stem cells
    Lee, Jienny
    Lee, Keum Sil
    Kim, Chan-Lan
    Byeon, Jeong Su
    Gu, Na-Yeon
    Cho, In-Soo
    Cha, Sang-Ho
    JOURNAL OF VETERINARY SCIENCE, 2017, 18 (02) : 141 - 148
  • [44] Osteogenic Differentiation from Mouse Adipose-Derived Stem Cells and Bone Marrow Stem Cells
    Huang, Cheng-Pu
    Hsu, Keng-Chia
    Wu, Chean-Ping
    Wu, Hsi-Tien
    CHINESE JOURNAL OF PHYSIOLOGY, 2022, 65 (01): : 21 - 29
  • [45] The Role of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Micro-Scaffolds in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells
    Kim, Dong-Hyun
    Shin, Keun-Koo
    Jung, Jin Sup
    Chun, Ho Hwan
    Park, Seong Soo
    Lee, Jong Kook
    Park, Hong-Chae
    Yoon, Seog-Young
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (08) : 5520 - 5523
  • [46] Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia
    Chung, Dai-Jung
    Hayashi, Kei
    Toupadakis, Chrisoula A.
    Wong, Alice
    Yellowley, Clare E.
    RESEARCH IN VETERINARY SCIENCE, 2012, 92 (01) : 66 - 75
  • [47] Effect of Titanium Surfaces on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells
    Zanicotti, Diogo Godoy
    Duncan, Warwick John
    Seymour, Gregory John
    Coates, Dawn Elizabeth
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2018, 33 (03) : E77 - E87
  • [48] Asperosaponin VI stimulates osteogenic differentiation of rat adipose-derived stem cells
    Ding, Xingpo
    Li, Wuyin
    Chen, Dengshan
    Zhang, Chuanwei
    Wang, Lei
    Zhang, Hong
    Qin, Na
    Sun, Yongqiang
    REGENERATIVE THERAPY, 2019, 11 : 17 - 24
  • [49] Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells
    Liu, Guangpeng
    Zhou, Heng
    Li, Yulin
    Li, Gang
    Cui, Lei
    Liu, Wei
    Cao, Yilin
    CRYOBIOLOGY, 2008, 57 (01) : 18 - 24
  • [50] Osteogenic differentiation potential of adipose-derived stem cells from ovariectomized mice
    Wang, Lei
    Huang, Chenglong
    Li, Qing
    Xu, Xiaomei
    Liu, Lin
    Huang, Kui
    Cai, Xiaoxiao
    Xiao, Jingang
    CELL PROLIFERATION, 2017, 50 (02)