Error analysis of a finite difference scheme on a modified graded mesh for a time-fractional diffusion equation

被引:5
作者
Liu, Li-Bin [1 ]
Xu, Lei [1 ]
Zhang, Yong [2 ]
机构
[1] Nanning Normal Univ, Sch Math & Stat, Nanning 530010, Peoples R China
[2] Artificial Intelligence Chizhou Univ Chizhou, Sch Big Data, Chizhou 247000, Anhui, Peoples R China
关键词
Caputo fractional derivative; L1; scheme; Modified graded mesh; Error analysis; NUMERICAL SCHEMES;
D O I
10.1016/j.matcom.2023.02.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with a finite difference scheme on a new modified graded mesh for a time fractional diffusion equation with a Caputo fractional derivative of order alpha is an element of (0, 1). At first, the construction and some basic properties of this new modified graded mesh are investigated and on its basis the L1 scheme is applied to approximate the Caputo derivative. Meanwhile, the standard center finite difference scheme on a uniform mesh is used to discretize the diffusion term. Then, stability and convergence of the proposed scheme in the maximum norm are proved. The convergence result shows that on this modified graded mesh one attains an optimal 2 - alpha rate for the L1 scheme. Finally, the presented theoretical results are supported by some numerical experiments.(c) 2023 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 20 条
  • [1] NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) : 1740 - 1760
  • [2] Debnath L., 2003, INT J MATH MATH SCI, V2003, P3413, DOI [10.1155/s0161171203301486, DOI 10.1155/S0161171203301486]
  • [3] Diethelm K., 2010, APPL ORIENTED EXPOSI
  • [4] A compact finite difference scheme for the fractional sub-diffusion equations
    Gao, Guang-hua
    Sun, Zhi-zhong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) : 586 - 595
  • [5] A Fitted Scheme for a Caputo Initial-Boundary Value Problem
    Gracia, J. L.
    O'Riordan, E.
    Stynes, M.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (01) : 583 - 609
  • [6] Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 332 - 358
  • [7] TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : A146 - A170
  • [8] VARIATIONAL FORMULATION OF PROBLEMS INVOLVING FRACTIONAL ORDER DIFFERENTIAL OPERATORS
    Jin, Bangti
    Lazarov, Raytcho
    Pasciak, Joseph
    Rundell, William
    [J]. MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 2665 - 2700
  • [9] An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) : 197 - 221
  • [10] Fractional Differential Equations Based Modeling of Microbial Survival and Growth Curves: Model Development and Experimental Validation
    Kaur, A.
    Takhar, P. S.
    Smith, D. M.
    Mann, J. E.
    Brashears, M. M.
    [J]. JOURNAL OF FOOD SCIENCE, 2008, 73 (08) : E403 - E414