Genome-Wide Identification and Functional Characterization of Stress Related Glyoxalase Genes in Brassica napus L.

被引:9
|
作者
Yan, Guixin [1 ]
Zhang, Meili [1 ]
Guan, Wenjie [1 ]
Zhang, Fugui [1 ]
Dai, Wenjun [1 ]
Yuan, Lili [1 ]
Gao, Guizhen [1 ]
Xu, Kun [1 ]
Chen, Biyun [1 ]
Li, Lixia [1 ]
Wu, Xiaoming [1 ]
机构
[1] Chinese Acad Agr Sci, Minist Agr & Rural Affairs PRC, Key Lab Biol & Genet Improvement Oil Crops, Oil Crops Res Inst, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
glyoxalase; Brassica napus; genome-wide analysis; expression; stress; CELL-PROLIFERATION; I ACTIVITY; PLANT; METHYLGLYOXAL; PATHWAY; CLONING; TOLERANCE; EXPANSION; COLD; SITE;
D O I
10.3390/ijms24032130
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapeseed (Brassica napus L.) is not only one of the most important oil crops in the world, but it is also an important vegetable crop with a high value nutrients and metabolites. However, rapeseed is often severely damaged by adverse stresses, such as low temperature, pathogen infection and so on. Glyoxalase I (GLYI) and glyoxalase II (GLYII) are two enzymes responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione, which plays crucial roles in stress tolerance in plants. Considering the important roles of glyoxalases, the GLY gene families have been analyzed in higher plans, such as rice, soybean and Chinese cabbage; however, little is known about the presence, distribution, localizations and expression of glyoxalase genes in rapeseed, a young allotetraploid. In this study, a total of 35 BnaGLYI and 30 BnaGLYII genes were identified in the B. napus genome and were clustered into six and eight subfamilies, respectively. The classification, chromosomal distribution, gene structure and conserved motif were identified or predicted. BnaGLYI and BnaGLYII proteins were mainly localized in chloroplast and cytoplasm. By using publicly available RNA-seq data and a quantitative real-time PCR analysis (qRT-PCR), the expression profiling of these genes of different tissues was demonstrated in different developmental stages as well as under stresses. The results indicated that their expression profiles varied among different tissues. Some members are highly expressed in specific tissues, BnaGLYI11 and BnaGLYI27 expressed in flowers and germinating seed. At the same time, the two genes were significantly up-regulated under heat, cold and freezing stresses. Notably, a number of BnaGLY genes showed responses to Plasmodiophora brassicae infection. Overexpression of BnGLYI11 gene in Arabidopsis thaliana seedlings confirmed that this gene conferred freezing tolerance. This study provides insight of the BnaGLYI and BnaGLYII gene families in allotetraploid B. napus and their roles in stress resistance, and important information and gene resources for developing stress resistant vegetable and rapeseed oil.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Genome-wide identification and functional analysis of oleosin genes in Brassica napus L.
    Chen, Kang
    Yin, Yongtai
    Liu, Si
    Guo, Zhenyi
    Zhang, Kai
    Liang, Yu
    Zhang, Lina
    Zhao, Weiguo
    Chao, Hongbo
    Li, Maoteng
    BMC PLANT BIOLOGY, 2019, 19 (1)
  • [2] Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L.
    Sehrish, Sarfraz
    Sumbal, Wahid
    Xie, Meili
    Zhao, Chuanji
    Zuo, Rong
    Gao, Feng
    Liu, Shengyi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [3] Genome-Wide Identification and Characterization of Ammonium Transporter (AMT) Genes in Rapeseed (Brassica napus L.)
    Dai, Jing
    Han, Peipei
    Walk, Thomas C.
    Yang, Ling
    Chen, Liyu
    Li, Yinshui
    Gu, Chiming
    Liao, Xing
    Qin, Lu
    GENES, 2023, 14 (03)
  • [4] Genome-Wide Identification and Characterization of the CCT Gene Family in Rapeseed (Brassica napus L.)
    Yu, Liyiqi
    Xia, Jichun
    Jiang, Rujiao
    Wang, Jiajia
    Yuan, Xiaolong
    Dong, Xinchao
    Chen, Zhenjie
    Zhao, Zizheng
    Wu, Boen
    Zhan, Lanlan
    Zhang, Ranfeng
    Tang, Kang
    Li, Jiana
    Xu, Xinfu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [5] Genome-wide identification and characterization of SnRK family genes in Brassica napus
    Zhu, Weizhuo
    Wu, Dezhi
    Jiang, Lixi
    Ye, Lingzhen
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [6] Genome-Wide Identification and Characterization of the IGT Gene Family in Allotetraploid Rapeseed (Brassica napus L.)
    Sun, Chengming
    Zhang, Chun
    Wang, Xiadong
    Zhao, Xiaozhen
    Chen, Feng
    Zhang, Wei
    Hu, Maolong
    Fu, Sanxiong
    Yi, Bin
    Zhang, Jiefu
    DNA AND CELL BIOLOGY, 2021, 40 (03) : 441 - 456
  • [7] Genome-Wide Characterization and Analysis of Metallothionein Family Genes That Function in Metal Stress Tolerance in Brassica napus L.
    Pan, Yu
    Zhu, Meichen
    Wang, Shuxian
    Ma, Guoqiang
    Huang, Xiaohu
    Qiao, Cailin
    Wang, Rui
    Xu, Xinfu
    Liang, Ying
    Lu, Kun
    Li, Jiana
    Qu, Cunmin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (08)
  • [8] Genome-wide identification and expression analysis of CaM/CML genes in Brassica napus under abiotic stress
    He, Xin
    Liu, Wei
    Li, Wenqian
    Liu, Yan
    Wang, Weiping
    Xie, Pan
    Kang, Yu
    Liao, Li
    Qian, Lunwen
    Liu, Zhongsong
    Guan, Chunyun
    Guan, Mei
    Hua, Wei
    JOURNAL OF PLANT PHYSIOLOGY, 2020, 255
  • [9] Genome-wide identification of cold responsive transcription factors in Brassica napus L
    Ke, Liping
    Lei, Weixia
    Yang, Weiguang
    Wang, Jinyu
    Gao, Janfang
    Cheng, Jinhua
    Sun, Yuqiang
    Fan, Zhixiong
    Yu, Dongliang
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [10] Genome-wide identification and analysis of phosphate utilization related genes (PURs) reveal their roles involved in low phosphate responses in Brassica napus L.
    Shen, Yibing
    Chen, Jiaqi
    Liu, Haijiang
    Zhu, Wenyu
    Chen, Zhuo
    Zhang, Li
    Du, Runjie
    Wu, Zexuan
    Liu, Shiying
    Zhou, Sining
    Zhao, Huiyan
    Yin, Nengwen
    Li, Jiana
    Qu, Cunmin
    Du, Hai
    BMC PLANT BIOLOGY, 2025, 25 (01):