Large diameter laterally loaded piles in sand: Numerical evaluation of soil stress paths and relevance of laboratory soil element testing

被引:6
|
作者
Cheng, Xiaoyang [1 ]
Ibraim, Erdin [1 ]
Liu, Haoyuan [2 ]
Pisano, Federico [3 ]
Diambra, Andrea [1 ]
机构
[1] Univ Bristol, Dept Civil Engn, Bristol BS8 1QU, Avon, England
[2] Norwegian Geotech Inst, Sognsveien 72, N-0806 Oslo, Norway
[3] Delft Univ Technol, Fac Civil Engn & Geosci, NL-2628 CN Delft, Netherlands
关键词
Large-diameter pile; Stress path; Monotonic loading; Laboratory element testing; Finite element; DEFORMATION; ROTATION;
D O I
10.1016/j.compgeo.2022.105139
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper uses 3D numerical analyses to investigate the stress path experienced by soil elements around large diameter piles in sand subjected to monotonic drained lateral loading. Inspection of the loading-induced stresses in the soil revealed the multiaxial nature of these stress paths, which are characterised by rotation of one or more principal stress axes. Based on the outcome of the finite element analyses, typical stress paths for different soil elements around the piles are extracted. Such stress paths are then evaluated against those enabled by conventional and advanced laboratory soil element testing. It is found that a combination of tests in the Hollow Cylinder Torsional Apparatus (HCTA) can reproduce most features of the numerically identified stress paths for soil elements around the pile. Unavoidable limitations in laboratory testing are discussed as well as the major challenge in replicating the loading direction with respect to the material axes. Some guidance for the experimental implementation of these stress paths in the HCTA are provided as well as a discussion on the use of conventional experimental equipment, such as the conventional triaxial or simple shear apparatus.
引用
收藏
页数:13
相关论文
共 31 条
  • [31] Influence of the Three-Dimensional Effect of Pile-Soil System on the Vertical Dynamic Response of Large-Diameter Piles in Low-Strain Integrity Testing
    Guan, Wenjie
    Zhang, Meixia
    Wang, Zekun
    Jiang, Guosheng
    Liu, Wenqi
    Cao, Sheng
    Leo, Chin Jian
    An, Elieen
    Gao, Xiaodong
    Wu, Wenbing
    ENERGIES, 2022, 15 (24)