Terahertz Photoconductivity in Bilayer Graphene Transistors: Evidence for Tunneling at Gate-Induced Junctions

被引:10
|
作者
Mylnikov, Dmitry A. [1 ]
Titova, Elena I. [1 ,4 ]
Kashchenko, Mikhail A. [1 ,4 ]
V. Safonov, Ilya [1 ,4 ]
Zhukov, Sergey S. [1 ]
Semkin, Valentin A. [1 ]
Novoselov, Kostya S. [3 ,4 ]
Bandurin, Denis A. [2 ]
Svintsov, Dmitry A. [1 ]
机构
[1] Moscow Inst Phys & Technol, Ctr Photon & Mat 2D, Dolgoprudnyi 141700, Russia
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore
[3] Natl Univ Singapore, Inst Funct Intelligent Mat, Singapore 117575, Singapore
[4] Brain & Consciousness Res Ctr, Programmable Funct Mat Lab, Moscow 121205, Russia
基金
俄罗斯科学基金会;
关键词
bilayer graphene; photoconductivity; p-n junction; photodetector; tunneling; transistor;
D O I
10.1021/acs.nanolett.2c04119
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions. We find a strong positive contribution from junctions to resistance, temperature resistance coefficient, and photoresistivity at cryogenic temperatures T similar to 20 K. The contribution to these quantities from junctions exceeds strongly the bulk values at uniform channel doping even at small band gaps of similar to 10 meV. We further show that positive junction photoresistance is a hallmark of interband tunneling, and not of intraband thermionic conduction. Our results point to the possibility of creating various interband tunneling devices based on bilayer graphene, including steep-switching transistors and selective sensors.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 50 条
  • [1] Gate-induced insulating state in bilayer graphene devices
    Oostinga, Jeroen B.
    Heersche, Hubert B.
    Liu, Xinglan
    Morpurgo, Alberto F.
    Vandersypen, Lieven M. K.
    NATURE MATERIALS, 2008, 7 (02) : 151 - 157
  • [2] Gate-induced insulating state in bilayer graphene devices
    Jeroen B. Oostinga
    Hubert B. Heersche
    Xinglan Liu
    Alberto F. Morpurgo
    Lieven M. K. Vandersypen
    Nature Materials, 2008, 7 : 151 - 157
  • [3] Gate-induced gap in bilayer graphene suppressed by Coulomb repulsion
    Xu, Jin-Rong
    Song, Ze-Yi
    Lin, Hai-Qing
    Zhang, Yu-Zhong
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [4] Optical Phonons in Twisted Bilayer Graphene with Gate-Induced Asymmetric Doping
    Chung, Ting-Fung
    He, Rui
    Wu, Tai-Lung
    Chen, Yong P.
    NANO LETTERS, 2015, 15 (02) : 1203 - 1210
  • [5] Gate-Induced Source Tunneling FET (GISTFET)
    Pan, Andrew
    Chui, Chi On
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (08) : 2390 - 2395
  • [6] DIRECT EVIDENCE OF TUNNELING BETWEEN EDGE STATES ACROSS A GATE-INDUCED POTENTIAL BARRIER
    PECK, AJ
    BENDING, SJ
    WEIS, J
    HAUG, RJ
    VONKLITZING, K
    PLOOG, K
    PHYSICAL REVIEW B, 1995, 51 (07): : 4711 - 4714
  • [7] Twisted monolayer and bilayer graphene for vertical tunneling transistors
    Ghazaryan, Davit A.
    Misra, Abhishek
    Vdovin, Evgenii E.
    Watanabe, Kenji
    Taniguchi, Takashi
    Morozov, Sergei V.
    Mishchenko, Artem
    Novoselov, Kostya S.
    APPLIED PHYSICS LETTERS, 2021, 118 (18)
  • [8] Valley-polarized tunneling currents in bilayer graphene tunneling transistors
    Thompson, J. J. P.
    Leech, D. J.
    Mucha-Kruczynski, M.
    PHYSICAL REVIEW B, 2019, 99 (08)
  • [9] Impact of Quantization Energy and Gate Leakage in Bilayer Tunneling Transistors
    Teherani, James T.
    Agarwal, Sapan
    Yablonovitch, Eli
    Hoyt, Judy L.
    Antoniadis, Dimitri A.
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (02) : 298 - 300
  • [10] Insight Into Gate-Induced Drain Leakage in Silicon Nanowire Transistors
    Fan, Jiewen
    Li, Ming
    Xu, Xiaoyan
    Yang, Yuancheng
    Xuan, Haoran
    Huang, Ru
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (01) : 213 - 219