A New Method to Investigate the Size Effect and Anisotropy of Mechanical Properties of Columnar Jointed Rock Mass

被引:22
|
作者
Zhao, Danchen [1 ,2 ]
Xia, Yingjie [1 ,2 ,3 ]
Zhang, Chuanqing [3 ,4 ]
Liu, Ning [5 ]
Tang, Chun'an [1 ,2 ]
Singh, Hemant Kumar [6 ]
Chen, Jun [5 ]
Wang, Peng [5 ]
机构
[1] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Peoples R China
[3] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Power China Huadong Engn Corp, Hangzhou 310014, Peoples R China
[6] Rajiv Gandhi Inst Petr Technol, Dept Petr Engn & Geoengn, Amethi 229304, Uttar Pradesh, India
基金
中国国家自然科学基金;
关键词
Columnar jointed rock mass (CJRM); Representative volume element (RVE); Size effect; Anisotropy; Mechanical properties; REPRESENTATIVE ELEMENTARY VOLUME; BAIHETAN HYDROPOWER STATION; ELASTIC COMPLIANCE TENSOR; SPECIMEN SIZE; NUMERICAL DETERMINATION; DEFORMATION PROPERTIES; BASALT; DAM; STRENGTH; SLOPE;
D O I
10.1007/s00603-022-03200-3
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
As a special type of rock mass, the columnar jointed rock masses (CJRMs) present anisotropic mechanical properties and complicated failure modes due to the existence of columnar joints and micro-fractures. The determinations of mechanical properties and representative volume element (RVE) of CJRMs are important for the design, construction, and stability evalu-ation of hydropower projects. In this paper, the numerical simulations of CJRMs with different inclination angles and sizes under uniaxial and true triaxial compression conditions were conducted to investigate the size effect and anisotropic charac-teristics of mechanical properties. Results showed the failure modes presented anisotropic and size effect characteristics and the confining pressure influenced the failure modes by providing lateral enhancement. In addition, the mechanical properties first fluctuated and then reached stability as size increased, and the RVE were concentrated in 2 m to 3 m. The RVE were affected by the loading conditions and the CJRMs with inclination angles of 90 degrees and 75 degrees exhibited the smallest and largest RVE respectively. The anisotropy coefficients (ACs) of mechanical properties possessed a RVE of 2.5 m. Based on the simulations, a new method was proposed to investigate the correlation between the size effect and anisotropy of mechanical properties. Results showed the mechanical properties of CJRMs presented most stably at the inclination angle of 90 degrees, and the inclination angles ranging from 40 degrees to 75 degrees were the most unfavorable. Based on this method, the anisotropy of size effect and the size effect of anisotropy, which were difficult to investigate in the past, could be discussed in detail through numerical simulations.
引用
收藏
页码:2829 / 2859
页数:31
相关论文
共 50 条
  • [1] A New Method to Investigate the Size Effect and Anisotropy of Mechanical Properties of Columnar Jointed Rock Mass
    Danchen Zhao
    Yingjie Xia
    Chuanqing Zhang
    Ning Liu
    Chun’an Tang
    Hemant Kumar Singh
    Jun Chen
    Peng Wang
    Rock Mechanics and Rock Engineering, 2023, 56 : 2829 - 2859
  • [2] Numerical Simulation of Mechanical Properties of Irregular Columnar Jointed Rock Mass
    Yan, Long
    Xiang, Zhipeng
    Xu, Weiya
    Wang, Rubin
    Ji, Hua
    FRONTIERS IN PHYSICS, 2022, 10
  • [3] Study on Model Structure and Mechanical Anisotropy of Columnar Jointed Rock Mass Based on Three-Dimensional Printing Method
    Xia, Yingjie
    Zhang, Chuanqing
    Zhou, Hui
    Shan, Zhigang
    Liu, Ning
    Su, Guoshao
    Gao, Yang
    Singh, Hemant Kumar
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2020, 20 (11)
  • [4] Model Test Study on the Anisotropic Characteristics of Columnar Jointed Rock Mass
    Zhu, Zhende
    Que, Xiangcheng
    Niu, Zihao
    Lu, Wenbin
    SYMMETRY-BASEL, 2020, 12 (09):
  • [5] Study on size effect of jointed rock mass and influencing factors of the REV size based on the SRM method
    Zhou, Zongqing
    Sun, Jiwei
    Lai, Yongbiao
    Wei, Cheche
    Hou, Jian
    Bai, Songsong
    Huang, Xianxing
    Liu, Hongliang
    Xiong, Kaiqi
    Cheng, Shuai
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 127
  • [6] Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass
    Meng, Qing-Xiang
    Wang, Huan-Ling
    Xu, Wei-Ya
    Chen, Yu-Long
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2019, 124
  • [7] Deformation and strength anisotropy of columnar jointed rock mass with different cross-sectional shapes
    Que Xiang-cheng
    Zhu Zhen-de
    Niu Zi-hao
    Huang Hao-nan
    ROCK AND SOIL MECHANICS, 2021, 42 (09) : 2416 - 2426
  • [8] Determination of Strength and Deformation Properties of Columnar Jointed Rock Mass Using Physical Model Tests
    Lin, Zhinan
    Xu, Weiya
    Wang, Wei
    Wang, Huanling
    Wang, Rubin
    Ji, Hua
    Zhang, Jiuchang
    KSCE JOURNAL OF CIVIL ENGINEERING, 2018, 22 (09) : 3302 - 3311
  • [9] Size effect and lateral pressure effect on the mechanical resistance of columnar jointed basalt
    Wang, Yong-yi
    Gong, Bin
    Tang, Chun-an
    Yang, Xiao-yu
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2023, 171
  • [10] Tunnel reinforcement in columnar jointed basalts: The role of rock mass anisotropy
    Hatzor, Yossef H.
    Feng, Xia-Ting
    Li, Shaojun
    Yagoda-Biran, Gony
    Jiang, Quan
    Hu, Lianxing
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2015, 46 : 1 - 11