On the total monophonic number of a graph

被引:0
作者
Arumugam, S. [1 ]
Santhakumaran, A. P. [2 ]
Titus, P. [3 ]
Ganesamoorthy, K. [4 ]
Murugan, M. [4 ]
机构
[1] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil 626126, India
[2] Hindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India
[3] Anna Univ, Univ Coll Engn Nagercoil, Dept Math, Nagercoil 629004, India
[4] Govt Aided Autonomous Inst, Coimbatore Inst Technol, Dept Math, Coimbatore 641014, Tamil Nadu, India
关键词
total geodetic set; total monophonic set; total monophonic number; minimal total monophonic set; upper total monophonic number; GEODETIC NUMBER;
D O I
10.22049/CCO.2022.27731.1331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected graph of order n: A path P in G which does not have a chord is called a monophonic path. A subset S of V is called a monophonic set if every vertex v in V lies in a x-y monophonic path where x; y is an element of S. If further the induced subgraph G[S] has no isolated vertices, then S is called a total monophonic set. The total monophonic number m(t)(G) and the upper total monophonic number m(t)(+) (G) are respectively the minimum cardinality of a total monophonic set and the maximum cardinality of a minimal total monophonic set. In this paper we determine the value of these parameters for some classes of graphs and establish bounds for the same. We also prove the existence of graphs with prescribed values for m(t)(G) and m(t)(+) (G):
引用
收藏
页码:483 / 489
页数:7
相关论文
共 15 条
[11]  
Lesniak L., 2016, Graphs & Digraphs
[12]  
Muntean R., 2000, Congr. Numer., V143, P161
[13]   On the edge geodetic and edge geodetic domination numbers of a graph [J].
Samodivkin, Vladimir .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (01) :41-54
[14]  
Santhakumaran A. P., 2021, Proyecciones (Antofagasta), V40, P561, DOI 10.22199/issn.0717-6279-2021-02-0031
[15]  
Santhakumaran A. P., 2014, Journal of Applied Mathematics and Informatics, V32, P255