The intersection theory of the moduli stack of vector bundles on P1

被引:3
作者
Larson, Hannah K. [1 ]
机构
[1] Stanford Univ, Dept Math, 380 Jane Stanford Way, Stanford, CA 94305 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2023年 / 66卷 / 02期
关键词
Intersection theory; moduli of vector bundles; Chow rings; CYCLES;
D O I
10.4153/S0008439522000340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the integral Chow and cohomology rings of the moduli stack B-r,B-d of rank r, degree d vector bundles on P-1-bundles. We work over a field k of arbitrary characteristic. We first show that the rational Chow ring A(Q)*(B-r,B-d) is a free Q-algebra on 2r + 1 generators. The isomorphism class of this ring happens to be independent of d. Then, we prove that the integral Chow ring A*(B-r,B-d) is torsion-free and provide multiplicative generators for A*(B-r,B-d) as a subring of A(Q)*(B-r,B-d). From this description, we see that A*(B-r,B-d) is not finitely generated as a Z-algebra. Finally, when k = C, the cohomology ring of B-r,B-d is isomorphic to its Chow ring.
引用
收藏
页码:359 / 379
页数:21
相关论文
共 17 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]  
Bachmann T, 2019, SEL MATH-NEW SER, V25, DOI 10.1007/s00029-019-0471-1
[3]  
Bae Y., 2021, PREPRINT
[4]   Chow rings of stacks of prestable curves I [J].
Bae, Younghan ;
Schmitt, Johannes ;
Skowera, Jonathan .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[5]   On the motivic class of the stack of bundles [J].
Behrend, Kai ;
Dhillon, Ajneet .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :617-644
[6]   ON THE ABEL-JACOBI MAP FOR DIVISORS OF HIGHER RANK ON A CURVE [J].
BIFET, E ;
GHIONE, F ;
LETIZIA, M .
MATHEMATISCHE ANNALEN, 1994, 299 (04) :641-672
[7]   ALGEBRAIC CYCLES AND HIGHER K-THEORY [J].
BLOCH, S .
ADVANCES IN MATHEMATICS, 1986, 61 (03) :267-304
[8]   STACKS OF TRIGONAL CURVES [J].
Bolognesi, Michele ;
Vistoli, Angelo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (07) :3365-3393
[9]  
Bott R., 1958, Mich. Math. J., V5, P35, DOI 10.1307/MMJ/1028998010
[10]  
Canning S., 2021, PREPRINT