Solutions of the Yang-Baxter Equation and Strong Semilattices of Skew Braces

被引:1
作者
Catino, Francesco [1 ]
Mazzotta, Marzia [1 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dept Math & Phys Ennio De Giorgi, Via Arnesano, I-73100 Lecce, Italy
关键词
Quantum Yang-Baxter equation; set-theoretic solution; Clifford semigroup; weak brace; skew brace; brace; RINGS;
D O I
10.1007/s00009-024-02611-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any set-theoretic solution of the Yang-Baxter equation associated with a dual weak brace is a strong semilattice of non-degenerate bijective solutions. This fact makes use of the description of any dual weak brace S we provide in terms of strong semilattice Y of skew braces B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document}, with alpha is an element of Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in Y$$\end{document}. Additionally, we describe the ideals of S and study its nilpotency by correlating it to that of each skew brace B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document}.
引用
收藏
页数:22
相关论文
共 35 条
  • [1] Ballester-Bolinches A, 2024, Arxiv, DOI arXiv:2304.13475
  • [2] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    [J]. JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [3] PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL
    BAXTER, RJ
    [J]. ANNALS OF PHYSICS, 1972, 70 (01) : 193 - &
  • [4] Central nilpotency of skew braces
    Bonatto, Marco
    Jedlicka, Premysl
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (12)
  • [5] Aspects of the category SKB of skew braces
    Bourn, Dominique
    Facchini, Alberto
    Pompili, Mara
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (05) : 2129 - 2143
  • [6] Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    [J]. JOURNAL OF ALGEBRA, 2023, 622 : 587 - 613
  • [7] Nilpotency in left semi-braces
    Catino, Francesco
    Cedo, Ferran
    Stefanelli, Paola
    [J]. JOURNAL OF ALGEBRA, 2022, 604 : 128 - 161
  • [8] Set-theoretic solutions of the Yang-Baxter equation associated to weak braces
    Catino, Francesco
    Mazzotta, Marzia
    Miccoli, Maria Maddalena
    Stefanelli, Paola
    [J]. SEMIGROUP FORUM, 2022, 104 (02) : 228 - 255
  • [9] Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces
    Catino, Francesco
    Colazzo, Ilaria
    Stefanelli, Paola
    [J]. FORUM MATHEMATICUM, 2021, 33 (03) : 757 - 772
  • [10] Skew left braces with non-trivial annihilator
    Catino, Francesco
    Colazzo, Ilaria
    Stefanelli, Paola
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (02)