Stability Analysis and Simulation of a Delayed Dengue Transmission Model with Logistic Growth and Nonlinear Incidence Rate

被引:1
|
作者
Guo, Fangkai [1 ]
Tian, Xiaohong [1 ]
机构
[1] Shanxi Univ, Complex Syst Res Ctr, Taiyuan 030006, Shanxi, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 03期
基金
中国国家自然科学基金;
关键词
Dengue transmission; logistic growth; Hopf bifurcation; stability switch; global stability; sensitivity analysis; data fitting; EPIDEMIC MODEL; SENSITIVITY-ANALYSIS; SYSTEMS;
D O I
10.1142/S0218127424500287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, a dengue transmission model with logistic growth and time delay (tau) is investigated. Through detailed mathematical analysis, the local stability of a disease-free equilibrium and an endemic equilibrium is discussed, the existence of Hopf bifurcation and stability switch is established, and it is proved that the system is permanent if the basic reproduction number is greater than 1. On the basis of Lyapunov functional and LaSalle's invariance principle, sufficient conditions are derived for the global stability of the endemic equilibrium. The primary theoretical results are simulated numerically. In addition, when tau = 0, relevant properties of the Hopf bifurcation are analyzed. Finally, sensitivity analysis is given and data fitting is carried out to predict the epidemic development trend of dengue fever in Singapore in 2020.
引用
收藏
页数:22
相关论文
共 50 条