Optimized Lithium Ion Coordination via Chlorine Substitution to Enhance Ionic Conductivity of Garnet-Based Solid Electrolytes

被引:11
作者
Wang, Shuhan [1 ]
Zeng, Ting [1 ]
Wen, Xiaojuan [1 ]
Xu, Haoyang [1 ]
Fan, Fengxia [1 ]
Wang, Xinxiang [1 ]
Tian, Guilei [1 ]
Liu, Sheng [1 ]
Liu, Pengfei [1 ]
Wang, Chuan [1 ]
Zeng, Chenrui [1 ]
Shu, Chaozhu [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, 1 Dongsanlu, Chengdu 610059, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cl-; substitution; garnet-type electrolytes; Li+ diffusion channel; Li+ migration barrier; lithium-ion batteries; SUPERIONIC CONDUCTOR; STATE ELECTROLYTES; LI7LA3ZR2O12; SPECTROSCOPY; COHP;
D O I
10.1002/smll.202309874
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Garnet-type solid-state electrolytes attract abundant attentions due to the broad electrochemical window and remarkable thermal stability while their poor ionic conductivity obstructs their widespread application in all-solid-state batteries. Herein, the enhanced ionic conductivity of garnet-type solid electrolytes is achieved by partially substituting O2- sites with Cl- anions, which effectively reduce Li+ migration barriers while preserving the highly conductive cubic phase of garnet-type solid-state electrolytes. This substitution not only weakens the anchoring effect of anions on Li+ to widen the size of Li+ diffusion channel but also optimizes the occupancy of Li+ at different sites, resulting in a substantial reduction of the Li+ migration barrier and a notable improvement in ionic conductivity. Leveraging these advantageous properties, the developed Li6.35La3Zr1.4Ta0.6O11.85-Cl-0.15 (LLZTO-0.15Cl) electrolyte demonstrates high Li+ conductivity of 4.21x10(-6) S cm(-1). When integrated with LiFePO4 (LFP) cathode and metallic lithium anode, the LLZTO-0.15Cl electrolyte enables the solid-state battery to operate for more than 100 cycles with a high capacity retention of 76.61% and superior Coulombic efficiency of 99.48%. This work shows a new strategy for modulating anionic framework to enhance the conductivity of garnet-type solid-state electrolytes.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Design Unique Air-Stable and Li-Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for All-Solid-State Lithium-Metal Batteries [J].
Ahmad, Niaz ;
Sun, Shaorui ;
Yu, Peiwen ;
Yang, Wen .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (28)
[2]   Self-Expanding Ion-Transport Channels on Anodes for Fast-Charging Lithium-Ion Batteries [J].
An, Juan ;
Zhang, Hongyu ;
Qi, Lu ;
Li, Guoxing ;
Li, Yuliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (07)
[3]   Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2046-2052
[4]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[5]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]  
Briggs D., 1981, Surf. Interface Anal, V3
[8]   Local structural features of medium-entropy garnet with ultra-long cycle life [J].
Chen, Yuwei ;
Wang, Tengrui ;
Chen, Huaican ;
KAn, Wang Hay ;
Yin, Wen ;
Song, Zhenyou ;
Wang, Chen ;
Ma, Jiwei ;
Luo, Wei ;
Huang, Yunhui .
MATTER, 2023, 6 (05) :1530-1541
[9]   Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes [J].
Cheng, Xin-Bing ;
Zhao, Chen-Zi ;
Yao, Yu-Xing ;
Liu, He ;
Zhang, Qiang .
CHEM, 2019, 5 (01) :74-96
[10]   Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets [J].
Deringer, Volker L. ;
Tchougreeff, Andrei L. ;
Dronskowski, Richard .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (21) :5461-5466