Treatment planning of scanned proton beams in RayStation

被引:24
作者
Janson, Martin [1 ,2 ]
Glimelius, Lars [1 ]
Fredriksson, Albin [1 ]
Traneus, Erik [1 ]
Engwall, Erik [1 ]
机构
[1] RaySearch Labs AB, Stockholm, Sweden
[2] Box 45169, S-45169 Stockholm, Sweden
关键词
Proton therapy; Treatment planning; RayStation; Robust optimization; 4D optimization; Monte Carlo dose calculation; Proton arc therapy; Deep learning auto -planning; Robustness evaluation; Scripting; MULTIPLE-SCATTERING; DOSE CALCULATION; OPTIMIZATION; THERAPY; UNCERTAINTIES; RANGE; SENSITIVITY; SYSTEM; DEPTH; MODEL;
D O I
10.1016/j.meddos.2023.10.009
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The use of scanned proton beams in external beam radiation therapy has seen a rapid development over the past decade. This technique places new demands on treatment planning, as compared to conventional photon-based radiation therapy. In this article, several proton specific functions as implemented in the treatment planning system RayStation are presented. We will cover algorithms for energy layer and spot selection, basic optimization including the handling of spot weight limits, optimization of the linear energy transfer (LET) distribution, robust optimization including the special case of 4D optimization, proton arc planning, and automatic planning using deep learning. We will further present the Monte Carlo (MC) proton dose engine in RayStation to some detail, from the material interpretation of the CT data, through the beam model parameterization, to the actual MC transport mechanism. Useful tools for plan evaluation, including robustness evaluation, and the versatile scripting interface are also described. The overall aim of the paper is to give an overview of some of the key proton planning functions in RayStation, with example usages, and at the same time provide the details about the underlying algorithms that previously have not been fully publicly available. (c) 2023 The Authors. Published by Elsevier Inc. on behalf of American Association of Medical Dosimetrists. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页码:2 / 12
页数:11
相关论文
共 50 条
[41]   The impact of motion on onboard MRI-guided pencil beam scanned proton therapy treatments [J].
Duetschler, Alisha ;
Safai, Sairos ;
Weber, Damien C. ;
Lomax, Antony J. ;
Zhang, Ye .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (09)
[42]   Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system [J].
Zhu, X. R. ;
Poenisch, F. ;
Lii, M. ;
Sawakuchi, G. O. ;
Titt, U. ;
Bues, M. ;
Song, X. ;
Zhang, X. ;
Li, Y. ;
Ciangaru, G. ;
Li, H. ;
Taylor, M. B. ;
Suzuki, K. ;
Mohan, R. ;
Gillin, M. T. ;
Sahoo, N. .
MEDICAL PHYSICS, 2013, 40 (04)
[43]   Oxygen beams for therapy: advanced biological treatment planning and experimental verification [J].
Sokol, O. ;
Scifoni, E. ;
Tinganelli, W. ;
Kraft-Weyrather, W. ;
Wiedemann, J. ;
Maier, A. ;
Boscolo, D. ;
Friedrich, T. ;
Brons, S. ;
Durante, M. ;
Kraemer, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (19) :7798-7813
[44]   Calculation and experimental verification of the RBE-weighted dose for scanned ion beams in the presence of target motion [J].
Gemmel, A. ;
Rietzel, E. ;
Kraft, G. ;
Durante, M. ;
Bert, C. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (23) :7337-7351
[45]   Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility [J].
Parodi, K. ;
Mairani, A. ;
Brons, S. ;
Hasch, B. G. ;
Sommerer, F. ;
Naumann, J. ;
Jaekel, O. ;
Haberer, T. ;
Debus, J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (12) :3759-3784
[46]   Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center [J].
Tessonnier, T. ;
Boehlen, T. T. ;
Ceruti, F. ;
Ferrari, A. ;
Sala, P. ;
Brons, S. ;
Haberer, T. ;
Debus, J. ;
Parodi, K. ;
Mairani, A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (16) :6579-6594
[47]   Speed and accuracy of a beam tracking system for treatment of moving targets with scanned ion beams [J].
Saito, Nami ;
Bert, Christoph ;
Chaudhri, Naved ;
Gemmel, Alexander ;
Schardt, Dieter ;
Durante, Marco ;
Rietzel, Eike .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (16) :4849-4862
[48]   Automation of pencil beam scanning proton treatment planning for intracranial tumours [J].
Placidi, Lorenzo ;
Righetto, Roberto ;
Vecchi, Claudio ;
Zara, Stefania ;
Alparone, Alessandro ;
Moretti, Roberto ;
Amelio, Dante ;
Scartoni, Daniele ;
Schwarz, Marco .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 105
[49]   The proton arc therapy treatment planning problem is NP-Hard [J].
Wase, Viktor ;
Wuyckens, Sophie ;
Lee, John A. ;
Saint-Guillain, Michael .
COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
[50]   Fast calculation of nanodosimetric quantities in treatment planning of proton and ion therapy [J].
Ramos-Mendez, Jose ;
Burigo, Lucas N. ;
Schulte, Reinhard ;
Chuang, Cynthia ;
Faddegon, Bruce .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (23)