SLGCN: Structure-enhanced line graph convolutional network for predicting drug-disease associations

被引:4
|
作者
Liu, Bao-Min [1 ]
Gao, Ying-Lian [2 ]
Li, Feng [1 ]
Zheng, Chun-Hou [1 ]
Liu, Jin-Xing [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Shandong, Peoples R China
[2] Qufu Normal Univ Lib, Qufu Normal Univ, Rizhao 276826, Shandong, Peoples R China
关键词
Drug-disease association prediction; Graph convolutional network; Line graph; Subgraph; CANCER; GENES;
D O I
10.1016/j.knosys.2023.111187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug repositioning is a rapidly growing strategy in drug discovery, as the time and cost needed are considerably less compared to developing new drugs. In addition to traditional wet experiments, designing effective computational methods to discover potential drug-disease associations is an attractive shortcut in drug repositioning. Most current methods based on graph neural networks ignore the heterophily of the constructed drug-disease network, resulting in inefficient predictions. In this paper, a novel structure -enhanced line graph convolutional network (SLGCN) is proposed to learn comprehensive representations of drug-disease pairs, incorporating structural information to conduct heterophily. First, line graphs centered around drug-disease pairs are extracted. This process turns the association prediction task into a node classification problem, which better displays the learning ability of SLGCN. Then, in message aggregation, a relation matrix is proposed to mark the structural importance of neighboring nodes. In this way, messages from nodes with lower structural importance can be assigned small weights. Unlike vanilla GCN, which adds self -loops to average ego representations and aggregated messages, an update gate is proposed to integrate biology information contained in ego representations with topology information contained in aggregated messages. Extensive experiments show that SLGCN achieves better performance than other advanced methods among the two datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Predicting drug-disease associations through layer attention graph convolutional network
    Yu, Zhouxin
    Huang, Feng
    Zhao, Xiaohan
    Xiao, Wenjie
    Zhang, Wen
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (04)
  • [2] A model for predicting drug-disease associations based on dense convolutional attention network
    Wang, Huiqing
    Zhao, Sen
    Zhao, Jing
    Feng, Zhipeng
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 7419 - 7439
  • [3] Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network
    Luo, Huimin
    Zhu, Chunli
    Wang, Jianlin
    Zhang, Ge
    Luo, Junwei
    Yan, Chaokun
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [4] Predicting Herb-disease Associations Through Graph Convolutional Network
    Hu, Xuan
    Lu, You
    Tian, Geng
    Bing, Pingping
    Wang, Bing
    He, Binsheng
    CURRENT BIOINFORMATICS, 2023, 18 (07) : 610 - 619
  • [5] Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations
    Xuan, Ping
    Pan, Shuxiang
    Zhang, Tiangang
    Liu, Yong
    Sun, Hao
    CELLS, 2019, 8 (09)
  • [6] GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations
    Yao, Dengju
    Li, Bailin
    Zhan, Xiaojuan
    Zhan, Xiaorong
    Yu, Liyang
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [7] GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations
    Dengju Yao
    Bailin Li
    Xiaojuan Zhan
    Xiaorong Zhan
    Liyang Yu
    BMC Bioinformatics, 25
  • [8] Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning
    Zhang, Liangliang
    Chen, Ming
    Hu, Xiaowen
    Deng, Lei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [9] CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
    Ma, Zhihao
    Kuang, Zhufang
    Deng, Lei
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
    Zhihao Ma
    Zhufang Kuang
    Lei Deng
    BMC Bioinformatics, 22