Cross-dimensional feature attention aggregation network for cloud and snow recognition of high satellite images

被引:11
作者
Hu, Kai [1 ]
Zhang, Enwei [1 ]
Xia, Min [1 ]
Wang, Huiqin [1 ]
Ye, Xiaoling [1 ]
Lin, Haifeng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud and snow identification; Remote sensing image; Cross-dimensional feature attention; Deep learning; REMOTE-SENSING IMAGES; SHADOW DETECTION; SEMANTIC SEGMENTATION; AUTOMATED CLOUD; LANDSAT; COVER; CLASSIFICATION; FUSION;
D O I
10.1007/s00521-024-09477-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cloud and snow in remote sensing images typically block the underlying surface information and interfere with the extraction of available information, so detecting cloud and snow becomes a critical problem in remotely sensed image processing. The current methods for detecting clouds and snow are susceptible to interference from complex background, making it difficult to recover cloud edge details and causing missing and false detection phenomena. To address these issues, a cross-dimensional feature attention aggregation network is suggested to realize the segmentation of clouds and snow. To address the problem of interference induced by the similar spectral characteristics of clouds and snow, the context attention aggregation module is added to conflate feature maps of various dimensions and screen the information. Multi-scale strip convolution module (MSSCM) and its improved version MSSCMs are used to extract edge characteristics at different scales and improve the harsh segmentation border. Also, adding deep feature semantic information extraction module to deep features to guide the classification of the model to avoid the interference of complex background. Finally, a 'los beatles' module is used to replace the traditional linear combination in the decoding stage, and the feature information of different granularity is fused and extracted to enhance the model's detection efficiency. In this paper, experiments are carried out on the public datasets: CSWV, HRC_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}WHU and L8_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}SPARCS. The MIOU scores on the three datasets are 89.507%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 91.674%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 80.722%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, respectively. Comparative experiment findings demonstrate that the network presented in this article can attain the highest detection accuracy and good detection efficiency with low parameters.
引用
收藏
页码:7779 / 7798
页数:20
相关论文
共 37 条
  • [21] AFSNet: attention-guided full-scale feature aggregation network for high-resolution remote sensing image change detection
    Jiang, Ming
    Zhang, Xinchang
    Sun, Ying
    Feng, Weiming
    Gan, Qiao
    Ruan, Yongjian
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1882 - 1900
  • [22] Enhanced Multi-Dimensional and Multi-Grained Cascade Forest for Cloud/Snow Recognition Using Multispectral Satellite Remote Sensing Imagery
    Xia, Meng
    Wang, Zhijie
    Han, Fang
    Kang, Yanting
    IEEE ACCESS, 2021, 9 : 131072 - 131086
  • [23] MFALNet: A Multiscale Feature Aggregation Lightweight Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Lv, Liang
    Guo, Yiyou
    Bao, Tengfei
    Fu, Chenqin
    Huo, Hong
    Fang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2172 - 2176
  • [24] Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection
    Chen, Bojian
    Wu, Wenbin
    Li, Zhezhou
    Han, Tengfei
    Chen, Zhuolei
    Zhang, Weihao
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 643 - 669
  • [25] Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition
    Guo, Wenhui
    Li, Yaxuan
    Liu, Mengxue
    Ma, Rui
    Wang, Yanjiang
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [26] SDSNet: Building Extraction in High-Resolution Remote Sensing Images Using a Deep Convolutional Network with Cross-Layer Feature Information Interaction Filtering
    Wang, Xudong
    Tian, Mingliang
    Zhang, Zhijun
    He, Kang
    Wang, Sheng
    Liu, Yan
    Dong, Yusen
    REMOTE SENSING, 2024, 16 (01)
  • [27] A high-level feature channel attention UNet network for cholangiocarcinoma segmentation from microscopy hyperspectral images
    Hongmin Gao
    Mengran Yang
    Xueying Cao
    Qin Liu
    Peipei Xu
    Machine Vision and Applications, 2023, 34
  • [28] A high-level feature channel attention UNet network for cholangiocarcinoma segmentation from microscopy hyperspectral images
    Gao, Hongmin
    Yang, Mengran
    Cao, Xueying
    Liu, Qin
    Xu, Peipei
    MACHINE VISION AND APPLICATIONS, 2023, 34 (05)
  • [29] MEHGNet: a multi-feature extraction and high-resolution generative network for satellite cloud image sequence prediction
    Xie, Ben
    Dong, Jing
    Liu, Chang
    Cheng, Wei
    EARTH SCIENCE INFORMATICS, 2024, 17 (05) : 4931 - 4948
  • [30] LFEMAP-Net: Low-Level Feature Enhancement and Multiscale Attention Pyramid Aggregation Network for Building Extraction From High-Resolution Remote Sensing Images
    Liu, Yu
    Li, Erzhu
    Liu, Wei
    Li, Xing
    Zhu, Yuxuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 2718 - 2730