Cross-dimensional feature attention aggregation network for cloud and snow recognition of high satellite images

被引:11
作者
Hu, Kai [1 ]
Zhang, Enwei [1 ]
Xia, Min [1 ]
Wang, Huiqin [1 ]
Ye, Xiaoling [1 ]
Lin, Haifeng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Cloud and snow identification; Remote sensing image; Cross-dimensional feature attention; Deep learning; REMOTE-SENSING IMAGES; SHADOW DETECTION; SEMANTIC SEGMENTATION; AUTOMATED CLOUD; LANDSAT; COVER; CLASSIFICATION; FUSION;
D O I
10.1007/s00521-024-09477-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cloud and snow in remote sensing images typically block the underlying surface information and interfere with the extraction of available information, so detecting cloud and snow becomes a critical problem in remotely sensed image processing. The current methods for detecting clouds and snow are susceptible to interference from complex background, making it difficult to recover cloud edge details and causing missing and false detection phenomena. To address these issues, a cross-dimensional feature attention aggregation network is suggested to realize the segmentation of clouds and snow. To address the problem of interference induced by the similar spectral characteristics of clouds and snow, the context attention aggregation module is added to conflate feature maps of various dimensions and screen the information. Multi-scale strip convolution module (MSSCM) and its improved version MSSCMs are used to extract edge characteristics at different scales and improve the harsh segmentation border. Also, adding deep feature semantic information extraction module to deep features to guide the classification of the model to avoid the interference of complex background. Finally, a 'los beatles' module is used to replace the traditional linear combination in the decoding stage, and the feature information of different granularity is fused and extracted to enhance the model's detection efficiency. In this paper, experiments are carried out on the public datasets: CSWV, HRC_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}WHU and L8_\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\_$$\end{document}SPARCS. The MIOU scores on the three datasets are 89.507%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 91.674%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 80.722%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, respectively. Comparative experiment findings demonstrate that the network presented in this article can attain the highest detection accuracy and good detection efficiency with low parameters.
引用
收藏
页码:7779 / 7798
页数:20
相关论文
共 37 条
  • [1] Cross-dimensional feature attention aggregation network for cloud and snow recognition of high satellite images
    Kai Hu
    Enwei Zhang
    Min Xia
    Huiqin Wang
    Xiaoling Ye
    Haifeng Lin
    Neural Computing and Applications, 2024, 36 : 7779 - 7798
  • [2] Cloud/snow recognition of satellite cloud images based on multiscale fusion attention network
    Xia, Min
    Li, Yang
    Zhang, Yonghong
    Weng, Liguo
    Liu, Jia
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [3] Satellite Image for Cloud and Snow Recognition Based on Lightweight Feature Map Attention Network
    Yang, Chaoyun
    Zhang, Yonghong
    Xia, Min
    Lin, Haifeng
    Liu, Jia
    Li, Yang
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [4] Multiscale Attention Feature Aggregation Network for Cloud and Cloud Shadow Segmentation
    Chen, Kai
    Xia, Min
    Lin, Haifeng
    Qian, Ming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] MCANet: A Multi-Branch Network for Cloud/Snow Segmentation in High-Resolution Remote Sensing Images
    Hu, Kai
    Zhang, Enwei
    Xia, Min
    Weng, Liguo
    Lin, Haifeng
    REMOTE SENSING, 2023, 15 (04)
  • [6] FCDHNet: A feature cross-dimensional hybrid network for RGB-D salient object detection
    Wang, Feifei
    Zheng, Panpan
    Li, Yongming
    Wang, Liejun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [7] Controllably Deep Supervision and Multi-Scale Feature Fusion Network for Cloud and Snow Detection Based on Medium- and High-Resolution Imagery Dataset
    Zhang, Guangbin
    Gao, Xianjun
    Yang, Yuanwei
    Wang, Mingwei
    Ran, Shuhao
    REMOTE SENSING, 2021, 13 (23)
  • [8] High-resolution triplet network with dynamic multiscale feature for change detection on satellite images
    Hou, Xuan
    Bai, Yunpeng
    Li, Ying
    Shang, Changjing
    Shen, Qiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 177 : 103 - 115
  • [9] A Cross-Attention and Multilevel Feature Fusion Network for Breast Lesion Segmentation in Ultrasound Images
    Liu, Guoqi
    Zhou, Yanan
    Wang, Jiajia
    Chen, Zongyu
    Liu, Dong
    Chang, Baofang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [10] A deep feature fusion network with global context and cross-dimensional dependencies for classification of mild cognitive impairment from brain MRI
    Illakiya, T.
    Karthik, R.
    IMAGE AND VISION COMPUTING, 2024, 144