Preparation of stable colloidal dispersion of surface modified Fe3O4 nanoparticles for magnetic heating applications

被引:13
|
作者
Dizajyekan, Behnam Sabzi [1 ]
Jafari, Arezou [1 ]
Vafaie-Sefti, Mohsen [1 ]
Saber, Reza [2 ]
Fakhroueian, Zahra [3 ]
机构
[1] Tarbiat Modares Univ, Chem Engn Fac, Tehran, Iran
[2] Univ Tehran Med Sci, Adv Med Technol & Equipment Inst, Tehran, Iran
[3] Univ Tehran, Coll Engn, Sch Chem Engn, IPE, POB 11155-4563, Tehran, Iran
基金
美国国家科学基金会;
关键词
IRON-OXIDE NANOPARTICLES; ABSORPTION RATE; HYPERTHERMIA THERAPY; FLUID; NANOCOMPOSITES; POWER; EXTRACTION; NANOFLUIDS; PARTICLES; REMOVAL;
D O I
10.1038/s41598-024-51801-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The effect of surface modification on enhancing the magnetic heating behavior of magnetic nano fluids were investigated, for this purpose Fe3O4 nanoparticles were synthesized using co-precipitation method and surface modification was done using citric acid, ascorbic acid, tetraethyl orthosilicate (TEOS), polyvinyl alcohol (PVA) and polyethylene glycol (PEG). Experimental heating tests using AC magnetic field were done in the frequency of 100 kHz and different magnetic field (H) intensities. Theoretically the specific absorption rate (SAR) in magnetic nano fluids is independent of nanoparticles concentration but the experimental results showed different behavior. The theoretical SAR value @ H = 12kA.m(-1) for Nano fluids containing bare Fe3O4 nanoparticles was 11.5 W/g but in experimental tests the obtained value was 9.72 W/g for nano fluid containing 20,000 ppm of dispersed nanoparticles. The experimental SAR calculation was repeated for sample containing 10,000 ppm of nanoparticles and the results showed increase in experimental SAR that is an evidence of nanoparticles agglomeration in higher concentrations. The surface modification has improved the dispersion ability of the nanoparticles. The Ratio of SAR(, experimental, 20000ppm) to SAR(, experimental, 10000ppm) was 0.85 for bare Fe3O4 nanoparticles dispersion but in case of surface modified nanoparticles this ratio has increased up to 0.98 that shows lower agglomeration of nanoparticles as a result of surface modification, although on the other hand the surface modification agents were magnetically passive and so it is expected that in constant concentration the SAR for bare Fe3O4 nanoparticles to be higher than this variable for surface modified nanoparticles. At lower concentrations the dispersions containing bare Fe3O4 nanoparticles showed higher SAR values but at higher concentrations the surface modified Fe3O4 nanoparticles showed better results although the active agent amount was lower at them. Finally, it should be noted that the nanoparticles that were surface modified using polymeric agents showed the highest decrease in experimental SAR amounts comparing theoretical results that was because of the large molecules of polymers comparing other implemented surface modification agents.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Synthesis Methods of Fe3O4 Nanoparticles for Biomedical Applications
    Fatmawati, Titin
    Shiddiq, Muhandis
    Armynah, Bidayatul
    Tahir, Dahlang
    CHEMICAL ENGINEERING & TECHNOLOGY, 2023, 46 (11) : 2356 - 2366
  • [22] Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles
    Mohamed, Saleh A.
    Al-Harbi, Majed H.
    Almulaiky, Yaaser Q.
    Ibrahim, Ibrahim H.
    El-Shishtawy, Reda M.
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2017, 27 : 84 - 90
  • [23] Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles
    Hsieh, S.
    Huang, B. Y.
    Hsieh, S. L.
    Wu, C. C.
    Wu, C. H.
    Lin, P. Y.
    Huang, Y. S.
    Chang, C. W.
    NANOTECHNOLOGY, 2010, 21 (44)
  • [24] Cyclodextrin Anchoring on Magnetic Fe3O4 Nanoparticles Modified with Phosphonic Linkers
    Tudisco, Cristina
    Oliveri, Valentina
    Cantarella, Maria
    Vecchio, Graziella
    Condorelli, Guglielmo G.
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2012, (32) : 5323 - 5331
  • [25] Sonochemical Preparation and Characterization of Magnetic Fe3O4/Pt Composite Nanoparticles
    He Quanguo
    Wu Wei
    Zeng Lei
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 (02) : 311 - 315
  • [26] Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium
    Zhang, Xiaofei
    Wang, Jun
    SOLID STATE SCIENCES, 2018, 75 : 14 - 20
  • [27] Superparamagnetic Fe3O4 nanoparticles, synthesis and surface modification
    Abboud, Maher
    Youssef, Sami
    Podlecki, Jean
    Habchi, Roland
    Germanos, Georges
    Foucaran, Alain
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 39 : 641 - 648
  • [28] Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles
    Ghaemi, Maryam
    Absalan, Ghodratollah
    MICROCHIMICA ACTA, 2014, 181 (1-2) : 45 - 53
  • [29] Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems
    Azizi, Amir
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (09) : 3552 - 3561
  • [30] Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release
    Zhu, Aiping
    Yuan, Lanhua
    Jin, Wenjie
    Dai, Sheng
    Wang, Qianqian
    Xue, Zhengfeng
    Qin, Aijian
    ACTA BIOMATERIALIA, 2009, 5 (05) : 1489 - 1498