New vector solutions for the cubic nonlinear schrödinger system

被引:0
|
作者
Duan, Lipeng [1 ]
Luo, Xiao [2 ]
Zhen, Maoding [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 153卷 / 01期
关键词
SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; BOUND-STATES; PHASE-SEPARATION; ELLIPTIC SYSTEM; GROUND-STATES; UNIQUENESS; SPIKES; WAVES;
D O I
10.1007/s11854-023-0315-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a family of new solutions for the following nonlinear Schr & ouml;dinger system:{ Delta-u + P(y)u = mu u3 +beta uv2, u > 0, in R-3,-Delta v+ Q(y)v= nu v3 + beta u2v, v> 0, in R3,where P(y), Q(y) are positive radial potentials, mu > 0, nu > 0 and beta is an element of R. Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schr & ouml;dinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials P(y) and Q(y) decay in different rates.
引用
收藏
页码:247 / 291
页数:45
相关论文
共 50 条
  • [31] On vector solutions of nonlinear Schrodinger systems with mixed potentials
    Liu, Shilong
    Wang, Chunhua
    Wang, Qingfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 411 : 506 - 530
  • [32] On radial positive normalized solutions of the Nonlinear Schrödinger equation in an annulus
    Liang, Jian
    Song, Linjie
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [33] Distribution of positive solutions to Schrödinger systems with linear and nonlinear couplings
    Xinqiu Zhang
    Zhitao Zhang
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [34] Orbital stability of periodic standing waves for the cubic fractional nonlinear Schr?dinger equation
    Moraes, Gabriel E. Bittencourt
    Borluk, Handan
    de Loreno, Guilherme
    Muslu, Gulcin M.
    Natali, Fabio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 263 - 291
  • [35] The cubic-quintic nonlinear Schrödinger equation with inverse-square potential
    Ardila, Alex H.
    Murphy, Jason
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [36] Asymptotic behavior in time of solution for the cubic nonlinear Schrödinger equation on the tadpole graph
    Segata, Jun-ichi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 1977 - 1999
  • [37] Multiple positive solutions for a quasilinear system of Schrödinger equations
    Giovany M. Figueiredo
    Marcelo F. Furtado
    Nonlinear Differential Equations and Applications NoDEA, 2008, 15 : 309 - 334
  • [38] New Results for Periodic Discrete Nonlinear SchröDinger Equations
    Xu, Xiaoliang
    Chen, Huiwen
    Ouyang, Zigen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5768 - 5780
  • [39] Multiple non-radial solutions for coupled Schrödinger equations
    Huang, Xiaopeng
    Li, Haoyu
    Wang, Zhi-Qiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 1 - 22
  • [40] Positive solutions for quasilinear Schrödinger system with positive parameter
    Jianqing Chen
    Qian Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73