New vector solutions for the cubic nonlinear schrödinger system

被引:0
|
作者
Duan, Lipeng [1 ]
Luo, Xiao [2 ]
Zhen, Maoding [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 153卷 / 01期
关键词
SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; BOUND-STATES; PHASE-SEPARATION; ELLIPTIC SYSTEM; GROUND-STATES; UNIQUENESS; SPIKES; WAVES;
D O I
10.1007/s11854-023-0315-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a family of new solutions for the following nonlinear Schr & ouml;dinger system:{ Delta-u + P(y)u = mu u3 +beta uv2, u > 0, in R-3,-Delta v+ Q(y)v= nu v3 + beta u2v, v> 0, in R3,where P(y), Q(y) are positive radial potentials, mu > 0, nu > 0 and beta is an element of R. Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schr & ouml;dinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials P(y) and Q(y) decay in different rates.
引用
收藏
页码:247 / 291
页数:45
相关论文
共 50 条
  • [21] On energy stability for the coupled nonlinear Schrödinger system
    Li Ma
    Lin Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 774 - 784
  • [22] Exotic vector freak waves in the nonlocal nonlinear Schr?dinger equation
    Wang, Xiu-Bin
    Tian, Shou-Fu
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 442
  • [23] Infinitely many dichotomous solutions for the Schrödinger-Poisson system
    He, Yuke
    Li, Benniao
    Long, Wei
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (09) : 2049 - 2070
  • [24] Stability of bound states for regularized nonlinear Schrödinger equations
    Albert, John
    Arbunich, Jack
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [25] A global branch approach to normalized solutions for the Schrödinger equation
    Jeanjean, Louis
    Zhang, Jianjun
    Zhong, Xuexiu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 183 : 44 - 75
  • [26] Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger–Korteweg–de Vries system
    Qiuping Geng
    Mian Liao
    Jun Wang
    Lu Xiao
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [27] PT symmetric cubic-quintic nonlinear Schr?dinger equation with dual power nonlinearities and its solitonic solutions
    Sakthivinayagam, P.
    Chen, Jing
    OPTIK, 2020, 217
  • [28] Optical soliton solutions in a distinctive class of nonlinear Schrödinger's equation with cubic, quintic, septic, and nonic nonlinearities
    Hussain, Shabbir
    Iqbal, Muhammad Sajid
    Bayram, Mustafa
    Ashraf, Romana
    Inc, Mustafa
    Rezapour, Shahram
    Tarar, Muhammad Akhtar
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [29] A binary Darboux transformation for multi-component nonlinear Schrödinger equations and dark vector soliton solutions
    Ye, Rusuo
    Zhang, Yi
    PHYSICS OF FLUIDS, 2023, 35 (11)
  • [30] MULTIPLE SOLUTIONS AND THEIR LIMITING BEHAVIOR OF COUPLED NONLINEAR SCHRDINGER SYSTEMS
    万优艳
    Acta Mathematica Scientia, 2010, 30 (04) : 1199 - 1218