Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree

被引:4
|
作者
Li, Jianbo [1 ]
Lv, Zhiqiang [1 ,2 ]
Ma, Zhaobin [1 ]
Wang, Xiaotong [1 ]
Xu, Zhihao [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266701, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent transportation system; Taxi demand; Graph structure; Tree structure; Multiple factors; PREDICTION;
D O I
10.1016/j.inffus.2023.102178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Taxi is one of the important means of transportation for people's daily travel activities, and it is one of the important research objects of intelligent transportation system. Taxi demand forecasting research can promote the application of urban transportation basic services and the transportation department to analyze and allocate transportation resources more reasonably. Graph structure is an important method for capturing spatial correlations among urban regions. However, it has certain limitations in capturing the hierarchical features and the local path features of regional nodes. Additionally, existing research has failed to capture multiple factors influencing changes in taxi demand. Therefore, this study proposes a spatial-temporal model based on capturing multi-factor features. The model innovatively uses the tree structure as a topology structure and proposes the tree convolution for constructing data spatial distribution features. The spatial-temporal convolution module with tree convolution as the core can effectively capture the hierarchical features and the local path features among area nodes. In this study, four factors affecting taxi demand are designed. The deep features of the four factors are further fused through the spatial-temporal convolution module. The model integrates multiple influencing factors affecting taxi demand from the spatial-temporal level and shows certain advantages in experiments. Compared with existing baselines, the model designed in this paper shows certain advantages in three real urban taxi datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015
  • [32] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [33] Graph enhanced spatial-temporal transformer for traffic flow forecasting
    Kong, Weishan
    Ju, Yanni
    Zhang, Shiyuan
    Wang, Jun
    Huang, Liwei
    Qu, Hong
    APPLIED SOFT COMPUTING, 2025, 170
  • [34] Spatial-temporal forecasting of solar radiation
    Boland, John
    RENEWABLE ENERGY, 2015, 75 : 607 - 616
  • [35] Aircraft Taxi Path Optimization Considering Environmental Impacts Based on a Bilevel Spatial-Temporal Optimization Model
    Chen, Yuxiu
    Quan, Liyan
    Yu, Jian
    ENERGIES, 2024, 17 (11)
  • [36] STGGAN: Spatial-temporal Graph Generation
    Zhang, Liming
    27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, : 608 - 609
  • [37] Dynamic spatial-temporal model for carbon emission forecasting
    Gong, Mingze
    Zhang, Yongqi
    Li, Jia
    Chen, Lei
    JOURNAL OF CLEANER PRODUCTION, 2024, 463
  • [38] Dynamic Spatial-Temporal Graph Model for Disease Prediction
    Senthilkumar, Ashwin
    Gupte, Mihir
    Shridevi, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 950 - 957
  • [39] A Spatial-Temporal Convolutional Model with Improved Graph Representation
    Lv, Yang
    Cheng, Zesheng
    Lv, Zhiqiang
    Li, Jianbo
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS (WASA 2022), PT I, 2022, 13471 : 101 - 112
  • [40] Spatial-Temporal Graph Boosting Networks: Enhancing Spatial-Temporal Graph Neural Networks via Gradient Boosting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Zheng, Yan
    Wang, Liang
    Wang, Junpeng
    Dai, Xin
    Zhuang, Zhongfang
    Zhang, Wei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 504 - 513