Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree

被引:4
|
作者
Li, Jianbo [1 ]
Lv, Zhiqiang [1 ,2 ]
Ma, Zhaobin [1 ]
Wang, Xiaotong [1 ]
Xu, Zhihao [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266701, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent transportation system; Taxi demand; Graph structure; Tree structure; Multiple factors; PREDICTION;
D O I
10.1016/j.inffus.2023.102178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Taxi is one of the important means of transportation for people's daily travel activities, and it is one of the important research objects of intelligent transportation system. Taxi demand forecasting research can promote the application of urban transportation basic services and the transportation department to analyze and allocate transportation resources more reasonably. Graph structure is an important method for capturing spatial correlations among urban regions. However, it has certain limitations in capturing the hierarchical features and the local path features of regional nodes. Additionally, existing research has failed to capture multiple factors influencing changes in taxi demand. Therefore, this study proposes a spatial-temporal model based on capturing multi-factor features. The model innovatively uses the tree structure as a topology structure and proposes the tree convolution for constructing data spatial distribution features. The spatial-temporal convolution module with tree convolution as the core can effectively capture the hierarchical features and the local path features among area nodes. In this study, four factors affecting taxi demand are designed. The deep features of the four factors are further fused through the spatial-temporal convolution module. The model integrates multiple influencing factors affecting taxi demand from the spatial-temporal level and shows certain advantages in experiments. Compared with existing baselines, the model designed in this paper shows certain advantages in three real urban taxi datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Learning Dynamic Spatial-Temporal Dependence in Traffic Forecasting
    Ren, Chaoyu
    Li, Yuezhu
    IEEE ACCESS, 2024, 12 : 190039 - 190053
  • [22] Learning to effectively model spatial-temporal heterogeneity for traffic flow forecasting
    Xu, Minrui
    Li, Xiyang
    Wang, Fucheng
    Shang, Jedi S.
    Chong, Tai
    Cheng, Wanjun
    Xu, Jiajie
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (03): : 849 - 865
  • [23] Traffic demand prediction based on spatial-temporal guided multi graph Sandwich-Transformer
    Wen, Yanjie
    Li, Zhihong
    Wang, Xiaoyu
    Xu , Wangtu
    INFORMATION SCIENCES, 2023, 643
  • [24] CNN-LSTM and clustering-based spatial-temporal demand forecasting for on-demand ride services
    Ay, Merhad
    Kulluk, Sinem
    Ozbakir, Lale
    Gulmez, Burak
    Ozturk, Guney
    Ozer, Sertay
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24) : 22071 - 22086
  • [25] Spatial-temporal model for wind speed in Lithuania
    Benth, Jurate Saltyte
    Saltyte, Laura
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (06) : 1151 - 1168
  • [26] Multi-Hierarchical Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Li, Zilong
    Ren, Qianqian
    Chen, Long
    Sui, Xiaohong
    Li, Jinbao
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4913 - 4919
  • [27] Spatial-Temporal Similarity Fusion Graph Adversarial Convolutional Networks for traffic flow forecasting
    Wang, Bin
    Long, Zhendan
    Sheng, Jinfang
    Zhong, Qiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [28] Local-Global Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Zong, Xinlu
    Chen, Zhen
    Yu, Fan
    Wei, Siwei
    ELECTRONICS, 2024, 13 (03)
  • [29] Forecasting global stock market volatility: The impact of volatility spillover index in spatial-temporal graph-based model
    Son, Bumho
    Lee, Yunyoung
    Park, Seongwan
    Lee, Jaewook
    JOURNAL OF FORECASTING, 2023, 42 (07) : 1539 - 1559
  • [30] STGAFormer: Spatial-temporal Gated Attention Transformer based Graph Neural Network for traffic flow forecasting
    Geng, Zili
    Xu, Jie
    Wu, Rongsen
    Zhao, Changming
    Wang, Jin
    Li, Yunji
    Zhang, Chenlin
    INFORMATION FUSION, 2024, 105