Machine learning-based classification analysis of knowledge worker mental stress

被引:0
|
作者
Kim, Hyunsuk [1 ]
Kim, Minjung [1 ]
Park, Kyounghyun [1 ]
Kim, Jungsook [1 ]
Yoon, Daesub [1 ]
Kim, Woojin [1 ]
Park, Cheong Hee [2 ]
机构
[1] Elect & Telecommun Res Inst, Mobil UX Res Sect, Daejeon, South Korea
[2] Chungnam Natl Univ, Div Comp Convergence, Daejeon, South Korea
关键词
heart rate; machine learning; mental stress; knowledge worker; photoplethysmography; pulse rate variability;
D O I
10.3389/fpubh.2023.1302794
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The aim of this study is to analyze the performance of classifying stress and non-stress by measuring biosignal data using a wearable watch without interfering with work activities at work. An experiment is designed where participants wear a Galaxy Watch3 to measure HR and photoplethysmography data while performing stress-inducing and relaxation tasks. The classification model was constructed using k-NN, SVM, DT, LR, RF, and MLP classifiers. The performance of each classifier was evaluated using LOSO-CV as a verification method. When the top 9 features, including the average and minimum value of HR, average of NNI, SDNN, vLF, HF, LF, LF/HF ratio, and total power, were used in the classification model, it showed the best performance with an accuracy of 0.817 and an F1 score of 0.801. This study also finds that it is necessary to measure physiological data for more than 2 or 3 min to accurately distinguish stress states.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Observational and experimental insights into machine learning-based defect classification in wafers
    Taha, Kamal
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025,
  • [42] A machine learning-based classification model to identify the effectiveness of vibration for μEDM
    Mollik, Md Shohag
    Saleh, Tanveer
    Nor, Khairul Affendy Bin Md
    Ali, Mohamed Sultan Mohamed
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (09) : 6979 - 6989
  • [43] Machine Learning-Based Spectral Library for Crop Classification and Status Monitoring
    Zhang, Jingcheng
    He, Yuhang
    Yuan, Lin
    Liu, Peng
    Zhou, Xianfeng
    Huang, Yanbo
    AGRONOMY-BASEL, 2019, 9 (09):
  • [44] Machine Learning-Based Text Classification Comparison: Turkish Language Context
    Alzoubi, Yehia Ibrahim
    Topcu, Ahmet E.
    Erkaya, Ahmed Enis
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [45] Machine Learning-based Software Effort Estimation : An Analysis
    Polkowski, Zdzislaw
    Vora, Jayneel
    Tanwar, Sudeep
    Tyagi, Sudhanshu
    Singh, Pradeep Kumar
    Singh, Yashwant
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [46] A machine learning-based static analysis warning prioritization
    Qing, Mingshuang
    Feng, Xiang
    Luo, Jun
    Huang, Wanmin
    Zhang, Jingui
    Wang, Ping
    Fan, Yong
    Ge, Xiuting
    Pan, Ya
    2021 21ST INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C 2021), 2021, : 685 - 690
  • [47] RisklnDroid: Machine Learning-Based Risk Analysis on Android
    Merlo, Alessio
    Georgiu, Gabriel Claudiu
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2017, 2017, 502 : 538 - 552
  • [48] Machine Learning-Based Sentiment Analysis for Twitter Accounts
    Hasan, Ali
    Moin, Sana
    Karim, Ahmad
    Shamshirband, Shahaboddin
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2018, 23 (01)
  • [49] Machine learning-based myocardial infarction bibliometric analysis
    Fang, Ying
    Wu, Yuedi
    Gao, Lijuan
    FRONTIERS IN MEDICINE, 2025, 12
  • [50] Performance Analysis on Machine Learning-Based Channel Estimation
    Mei, Kai
    Liu, Jun
    Zhang, Xiaochen
    Rajatheva, Nandana
    Wei, Jibo
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 5183 - 5193