Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking

被引:0
作者
Zhao, Yilong [1 ]
Liu, Bohao [1 ]
Li, Yixing [1 ]
Chen, Zhe [1 ]
Zhu, Xingzhuo [1 ]
Tao, Runyi [1 ]
Wang, Zhiyu [1 ]
Wang, Hongyi [1 ]
Zhang, Yanpeng [1 ]
Yan, Shuguang [2 ]
Gong, Qiuyu [1 ]
Zhang, Guangjian [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Thorac Surg, Affiliated Hosp 1, Xian 710061, Shaanxi, Peoples R China
[2] Shaanxi Univ Chinese Med, Coll Basic Med, Century Ave, Xianyang 712046, Peoples R China
关键词
Qingzaojiufei decoction; pulmonary fibrosis; network pharmacology; molecular docking; TCMSP; protein-protein interaction; MESENCHYMAL TRANSITION; HIF-1-ALPHA; PATHWAYS; PARAQUAT; CELLS; MAPK;
D O I
10.2174/1381612829666230911105931
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: In recent years, pulmonary fibrosis (PF) has increased in incidence and prevalence. Qingzaojiufei decoction (QD) is a herbal formula that is used for the treatment of PF.Objective: In this research, network pharmacology and molecular docking methods were used to explore the major chemical components and potential mechanisms of QD in the treatment of PF.Methods: The principal components and corresponding protein targets of QD were used to screen on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID) and high-throughput experiment-and reference-guided database (HERB), Cytoscape 3.7.2 was used to construct the drug-component-target network. PF targets were collected by GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The protein-protein interaction (PPI) network was constructed by importing compound-disease intersection targets into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and visualized by Cytoscape3.7.2. We further performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the intersecting targets. In the last, we validated the core targets and active compounds by molecular docking.Results: The key compounds of quercetin, (-)-epigallocatechin-3-gallate, and kaempferol of QD were obtained. The key targets of AKT1, TNF, and IL6 of QD were obtained. The molecular docking results show that quercetin, (-)-epigallocatechin-3-gallate and kaempferol work well with AKT1, TNF and IL6.Conclusion: This research shows the multiple active components and molecular mechanism of QD in the treatment of PF and offers resources and suggestions for future studies.
引用
收藏
页码:2161 / 2176
页数:16
相关论文
共 50 条
  • [21] The mechanism study of Miao medicine Tongfengting decoction in the treatment of gout based on network pharmacology and molecular docking
    Peng, Xin
    Huang, Cong
    Zhang, Nannan
    Cao, Yuepeng
    Chen, Zhigang
    Ma, Wukai
    Liu, Zhengqi
    MEDICINE, 2022, 101 (51)
  • [22] Discussion on the molecular mechanism of Duhuo Jisheng decoction in treating osteoarthritis based on network pharmacology and molecular docking
    Yang, Liu
    Zheng, Senwang
    Hou, Ajiao
    Wang, Song
    Zhang, Jiaxu
    Yu, Huan
    Wang, Xuejiao
    Lan, Wei
    MEDICINE, 2022, 101 (42) : E31009
  • [23] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Jie Su
    Mengmeng Huo
    Fengnan Xu
    Liqiong Ding
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397 : 1551 - 1559
  • [24] Molecular mechanism of lycorine in the treatment of glioblastoma based on network pharmacology and molecular docking
    Su, Jie
    Huo, Mengmeng
    Xu, Fengnan
    Ding, Liqiong
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (03) : 1551 - 1559
  • [25] Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations
    Cheng, Wei
    Zhang, Bo-Feng
    Chen, Na
    Liu, Qun
    Ma, Xin
    Fu, Xiao
    Xu, Min
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2024, 82 (02) : 1433 - 1451
  • [26] Explore the mechanism and substance basis of Mahuang FuziXixin Decoction for the treatment of lung cancer based on network pharmacology and molecular docking
    Zhang, Weitong
    Tian, Wangqi
    Wang, Yifan
    Jin, Xiaojie
    Guo, Hui
    Wang, Yuwei
    Tang, Yuping
    Yao, Xiaojun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [27] Exploration of Gancao Xiexin decoction for treatment of Behcet disease based on network pharmacology and molecular docking
    Zhang, Xin
    MEDICINE, 2022, 101 (42) : E31277
  • [28] The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout
    Liu, Yuan
    Luo, Di
    Xu, Bo
    MEDICINE, 2022, 101 (47) : E31535
  • [29] Exploring the efficacy and molecular mechanism of Danhong injection comprehensively in the treatment of idiopathic pulmonary fibrosis by combining meta-analysis, network pharmacology, and molecular docking methods
    Wu, Xiaozheng
    Li, Wen
    Luo, Zhenliang
    Chen, Yunzhi
    MEDICINE, 2024, 103 (19) : E38133
  • [30] Investigating the Molecular Mechanism of Xijiao Dihuang Decoction for the Treatment of SLE Based on Network Pharmacology and Molecular Docking Analysis
    Wei, Fangzhi
    Song, Yitian
    Gong, Aiming
    Pan, Chengdan
    Zhuang, Yanping
    Zhang, Xuan
    Zeng, Minyu
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022