Ultrafast radiographic imaging and tracking: An overview of instruments, methods, data, and applications

被引:10
作者
Wang, Zhehui [1 ]
Leong, Andrew F. T. [1 ]
Dragone, Angelo [2 ]
Gleason, Arianna E. [2 ]
Ballabriga, Rafael [3 ]
Campbell, Christopher [1 ]
Campbell, Michael [3 ]
Clark, Samuel J. [4 ]
Da Via, Cinzia [5 ]
Dattelbaum, Dana M. [1 ]
Demarteau, Marcel [6 ]
Fabris, Lorenzo [6 ]
Fezzaa, Kamel [4 ]
Fossum, Eric R. [7 ]
Gruner, Sol M. [8 ]
Hufnagel, Todd C. [9 ]
Ju, Xiaolu [10 ]
Li, Ke [10 ]
Llopart, Xavier [3 ]
Lukic, Bratislav [11 ]
Rack, Alexander [11 ]
Strehlow, Joseph [1 ]
Therrien, Audrey C. [12 ]
Thom-Levy, Julia [8 ]
Wang, Feixiang [10 ]
Xiao, Tiqiao [10 ,13 ,14 ]
Xu, Mingwei [10 ,13 ,14 ]
Yue, Xin [7 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] CERN, CH-1211 Geneva 23, Switzerland
[4] Argonne Natl Lab, X Ray Sci Div, Adv Photon Source, Lemont, IL 60439 USA
[5] Univ Manchester, Manchester M13 9PL, Lancs, England
[6] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[7] Dartmouth Coll, Thayer Sch Engn Dartmouth, Hanover, NH 03755 USA
[8] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[9] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[10] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[11] ESRF The European Synchrotron, 71 Ave Martyrs,CS 40220, F-38043 Grenoble 9, France
[12] Univ Sherbrooke, Interdisciplinary Inst Technol Innovat, 3000 Blvd Univ, Sherbrooke, PQ J1K 0A5, Canada
[13] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[14] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
英国科研创新办公室;
关键词
Ultrafast; Imaging; Tracking; Optimization; Data science; Machine learning; Compressed sensing; CMOS; Pixelated detectors; X-RAY-DIFFRACTION; PIXEL ARRAY DETECTOR; PAIR CREATION ENERGY; PHASE-CONTRAST; REAL-TIME; IN-SITU; WIGNER-DISTRIBUTION; TEMPERATURE-DEPENDENCE; COMPUTED-TOMOGRAPHY; ELECTRON-MICROSCOPY;
D O I
10.1016/j.nima.2023.168690
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Ultrafast radiographic imaging and tracking (U-RadIT) use state-of-the-art ionizing particle and light sources to experimentally study sub-nanosecond transients or dynamic processes in physics, chemistry, biology, geology, materials science and other fields. These processes are fundamental to modern technologies and applications, such as nuclear fusion energy, advanced manufacturing, communication, and green transportation, which often involve one mole or more atoms and elementary particles, and thus are challenging to compute by using the first principles of quantum physics or other forward models. One of the central problems in U-RadIT is to optimize information yield through, e.g. high-luminosity X-ray and particle sources, efficient imaging and tracking detectors, novel methods to collect data, and large-bandwidth online and offline data processing, regulated by the underlying physics, statistics, and computing power. We review and highlight recent progress in: (a.) Detectors such as high-speed complementary metal-oxide semiconductor (CMOS) cameras, hybrid pixelated array detectors integrated with Timepix4 and other application-specific integrated circuits (ASICs), and digital photon detectors; (b.) U-RadIT modalities such as dynamic phase contrast imaging, dynamic diffractive imaging, and four-dimensional (4D) particle tracking; (c.) U-RadIT data and algorithms such as neural networks and machine learning, and (d.) Applications in ultrafast dynamic material science using XFELs, synchrotrons and laser-driven sources. Hardware-centric approaches to U-RadIT optimization are constrained by detector material properties, low signal-to-noise ratio, high cost and long development cycles of critical hardware components such as ASICs. Interpretation of experimental data, including comparisons with forward models, is frequently hindered by sparse measurements, model and measurement uncertainties, and noise. Alternatively, U-RadIT make increasing use of data science and machine learning algorithms, including experimental implementations of compressed sensing. Machine learning and artificial intelligence approaches, refined by physics and materials information, may also contribute significantly to data interpretation, uncertainty quantification and U-RadIT optimization.
引用
收藏
页数:36
相关论文
共 374 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]   Understanding and simulating SiPMs [J].
Acerbi, Fabio ;
Gundacker, Stefan .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 926 :16-35
[3]   Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities [J].
Albert, F. ;
Lemos, N. ;
Shaw, J. L. ;
King, P. M. ;
Pollock, B. B. ;
Goyon, C. ;
Schumaker, W. ;
Saunders, A. M. ;
Marsh, K. A. ;
Pak, A. ;
Ralph, J. E. ;
Martins, J. L. ;
Amorim, L. D. ;
Falcone, R. W. ;
Glenzer, S. H. ;
Moody, J. D. ;
Joshi, C. .
NUCLEAR FUSION, 2019, 59 (03)
[4]   Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses [J].
Albert, F. ;
Lemos, N. ;
Shaw, J. L. ;
Pollock, B. B. ;
Goyon, C. ;
Schumaker, W. ;
Saunders, A. M. ;
Marsh, K. A. ;
Pak, A. ;
Ralph, J. E. ;
Martins, J. L. ;
Amorim, L. D. ;
Falcone, R. W. ;
Glenzer, S. H. ;
Moody, J. D. ;
Joshi, C. .
PHYSICAL REVIEW LETTERS, 2017, 118 (13)
[5]   Megapixels @ Megahertz - The AGIPD high-speed cameras for the European XFEL [J].
Allahgholi, Aschkan ;
Becker, Julian ;
Delfs, Annette ;
Dinapoli, Roberto ;
Goettlicher, Peter ;
Graafsma, Heinz ;
Greiffenberg, Dominic ;
Hirsemann, Helmut ;
Jack, Stefanie ;
Klyuev, Alexander ;
Kruger, Hans ;
Kuhn, Manuela ;
Laurus, Torsten ;
Marras, Alessandro ;
Mezza, Davide ;
Mozzanica, Aldo ;
Poehlsen, Jennifer ;
Shalev, Ofir Shefer ;
Sheviakov, Igor ;
Schmitt, Bernd ;
Schwandt, Joern ;
Shi, Xintian ;
Smoljanin, Sergej ;
Trunk, Ulrich ;
Zhang, Jiaguo ;
Zimmer, Manfred .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 942
[6]   Exploring experimental parameter choice for rapid speckle-tracking phase-contrast X-ray imaging with a paper analyzer [J].
Aloisio, Isobel A. ;
Paganin, David M. ;
Wright, Christopher A. ;
Morgan, Kaye S. .
JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 :1279-1288
[7]   Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: Practical design aspects [J].
Anelli, G ;
Campbell, M ;
Delmastro, M ;
Faccio, F ;
Florian, S ;
Giraldo, A ;
Heijne, E ;
Jarron, P ;
Kloukinas, K ;
Marchioro, A ;
Moreira, P ;
Snoeys, W .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1999, 46 (06) :1690-1696
[8]  
[Anonymous], 2020, NAT REV PHYS, V2, P329
[9]   X-ray phase-contrast imaging for laser-induced shock waves [J].
Antonelli, L. ;
Barbato, F. ;
Mancelli, D. ;
Trela, J. ;
Zeraouli, G. ;
Boutoux, G. ;
Neumayer, P. ;
Atzeni, S. ;
Schiavi, A. ;
Volpe, L. ;
Bagnoud, V ;
Brabetz, C. ;
Zielbauer, B. ;
Bradford, P. ;
Woolsey, N. ;
Borm, B. ;
Batani, D. .
EPL, 2019, 125 (03)
[10]   Noise-Driven Anisotropic Diffusion Filtering for X-Ray Low Contrast Imaging [J].
Artyukov, I. A. ;
Irtuganov, N. N. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2019, 40 (02) :150-154