3D printed alginate/gelatin-based porous hydrogel scaffolds to improve diabetic wound healing

被引:11
|
作者
Lin, Zhaoyi [1 ,2 ]
Xie, Weike [1 ,3 ]
Cui, Zhenhua [1 ,2 ]
Huang, Jiana [1 ,2 ]
Cao, Hao [1 ,2 ]
Li, Yan [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen Campus, Shenzhen 518107, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Sensor Technol & Biomed Ins, Guangzhou 510006, Peoples R China
[3] Guangzhou Univ Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Peoples R China
关键词
3D printing; Porous hydrogel scaffolds; Wound healing; Tissue integration; OXIDIZED ALGINATE; GROWTH-FACTOR; GELATIN; CALCIUM; DEGRADATION;
D O I
10.1016/j.giant.2023.100185
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Diabetic wounds are difficult to heal due to hampered vascularization and tissue regeneration. Wound dressings need frequent replacement and show limited effects on guiding tissue repair. Here, bio-inks containing sodium alginate (SA), oxidized sodium alginate (OSA), gelatin (Gel) and CaCO 3 microspheres were prepared. To increase the printability, all bio-inks were pre-crosslinked with calcium ions (Ca 2 + ). Porous hydrogel scaffolds with 4.43 +/- 0.14 mu m 2 pore area and 184 +/- 25 mu m line diameter were fabricated via 3D printing. After lyophilization and swelling in PBS (pH 6.4), SA/OSA/Gel scaffold showed more excellent structural stability than SA and SA/Gel, which was attributed to the Schiff base reaction between OSA and Gel. NIH-3T3 cells on SA/OSA/Gel proliferated faster and showed better spreading morphology than those on SA and SA/Gel. After placed onto full-thickness wounds on SD rat back, SA/OSA/Gel scaffold guided tissue growth, integrated well with the regenerated tissue and accelerated wound healing, which promoted angiogenesis and showed 93.0 +/- 2.5% of collagen deposition between degraded fragments of hydrogel scaffold. Taken together, porous hydrogel scaffolds fabricated via 3D printing bio-inks composed of SA, OSA, Gel and CaCO 3 provide a potential strategy to improve diabetic wound healing.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] 3D printed hollow channeled hydrogel scaffolds with antibacterial and wound healing activities
    Chen, Birui
    Huang, Lifei
    Ma, Ruisen
    Luo, Yongxiang
    BIOMEDICAL MATERIALS, 2023, 18 (04)
  • [2] 3D-Printed Gelatin-Alginate Hydrogel Dressings for Burn Wound Healing: A Comprehensive Study
    Fayyazbakhsh, Fateme
    Khayat, Michael J.
    Leu, Ming C.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2022, 8 (04) : 274 - 291
  • [3] 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization
    You, Fu
    Wu, Xia
    Chen, Xiongbiao
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2017, 66 (06) : 299 - 306
  • [4] 3D Printed Gene-Activated Sodium Alginate Hydrogel Scaffolds
    Khvorostina, Maria A.
    Mironov, Anton, V
    Nedorubova, Irina A.
    Bukharova, Tatiana B.
    Vasilyev, Andrey V.
    Goldshtein, Dmitry, V
    Komlev, Vladimir S.
    Popov, Vladimir K.
    GELS, 2022, 8 (07)
  • [5] Gelatin-Based Hydrogel Functionalized with Dopamine and Layered Double Hydroxide for Wound Healing
    Zhang, Weijie
    Zhang, Bing
    Wang, Yihu
    Cao, Xiaofeng
    Wang, Jianing
    Lu, Weipeng
    Guo, Yanchuan
    GELS, 2024, 10 (05)
  • [6] 3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: In vitro and in vivo study
    Mujawar, Shahabaj S.
    Arbade, Gajanan K.
    Bisht, Neema
    Mane, Mahadeo
    Tripathi, Vidisha
    Sharma, Rakesh Kumar
    Kashte, Shivaji B.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 296
  • [7] Ishophloroglucin A-based multifunctional oxidized alginate/gelatin hydrogel for accelerating wound healing
    Kim, Nam-Gyun
    Kim, Se-Chang
    Kim, Tae-Hee
    Je, Jae-Young
    Lee, Bonggi
    Lee, Sang Gil
    Kim, Young-Mog
    Kang, Hyun Wook
    Qian, Zhong-Ji
    Kim, Namwon
    Jung, Won-Kyo
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 245
  • [8] Alginate/Gelatin-Based Hydrogel with Soy Protein/Peptide Powder for 3D Printing Tissue-Engineering Scaffolds to Promote Angiogenesis
    Liu, Yakui
    Hu, Qingxi
    Dong, Wenpei
    Liu, Suihong
    Zhang, Haiguang
    Gu, Yan
    MACROMOLECULAR BIOSCIENCE, 2022, 22 (04)
  • [9] 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds
    Sultan, Sahar
    Mathew, Aji P.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (146):
  • [10] Development of 3D printed sodium alginate/agar-agar/cloves scaffolds for potential wound healing applications
    Gillani, Syed Muneeb Haider
    Mughal, Awab
    Malik, Rizwan Ahmed
    Alrobei, Hussein
    Albaijan, Ibrahim
    Rehman, Muhammad Atiq Ur
    MATERIALS LETTERS, 2024, 377