Multi-Criteria Feature Selection Based Intrusion Detection for Internet of Things Big Data
被引:2
作者:
Wang, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
Wang, Jie
[1
]
Xiong, Xuanrui
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
Xiong, Xuanrui
[1
]
Chen, Gaosheng
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
Chen, Gaosheng
[1
]
Ouyang, Ruiqi
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R ChinaChongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
Ouyang, Ruiqi
[1
]
Gao, Yunli
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Software, Dalian 116024, Peoples R ChinaChongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
Gao, Yunli
[2
]
Alfarraj, Osama
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Community Coll, Comp Sci Dept, Riyadh 11437, Saudi ArabiaChongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
Alfarraj, Osama
[3
]
机构:
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian 116024, Peoples R China
[3] King Saud Univ, Community Coll, Comp Sci Dept, Riyadh 11437, Saudi Arabia
internet of things security;
intrusion detection;
big data;
smart cities;
feature selection;
ANOMALY DETECTION;
DETECTION SYSTEMS;
CLASSIFICATION;
ALGORITHM;
D O I:
10.3390/s23177434
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
The rapid growth of the Internet of Things (IoT) and big data has raised security concerns. Protecting IoT big data from attacks is crucial. Detecting real-time network attacks efficiently is challenging, especially in the resource-limited IoT setting. To enhance IoT security, intrusion detection systems using traffic features have emerged. However, these face difficulties due to varied traffic feature formats, hindering fast and accurate detection model training. To tackle accuracy issues caused by irrelevant features, a new model, LVW-MECO (LVW enhanced with multiple evaluation criteria), is introduced. It uses the LVW (Las Vegas Wrapper) algorithm with multiple evaluation criteria to identify pertinent features from IoT network data, boosting intrusion detection precision. Experimental results confirm its efficacy in addressing IoT security problems. LVW-MECO enhances intrusion detection performance and safeguards IoT data integrity, promoting a more secure IoT environment.