A subcomponent-guided deep learning method for interpretable cancer drug response prediction

被引:13
作者
Liu, Xuan [1 ]
Zhang, Wen [1 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
GEMCITABINE;
D O I
10.1371/journal.pcbi.1011382
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Accurate prediction of cancer drug response (CDR) is a longstanding challenge in modern oncology that underpins personalized treatment. Current computational methods implement CDR prediction by modeling responses between entire drugs and cell lines, without the consideration that response outcomes may primarily attribute to a few finer-level 'subcomponents', such as privileged substructures of the drug or gene signatures of the cancer cell, thus producing predictions that are hard to explain. Herein, we present SubCDR, a subcomponent-guided deep learning method for interpretable CDR prediction, to recognize the most relevant subcomponents driving response outcomes. Technically, SubCDR is built upon a line of deep neural networks that enables a set of functional subcomponents to be extracted from each drug and cell line profile, and breaks the CDR prediction down to identifying pairwise interactions between subcomponents. Such a subcomponent interaction form can offer a traceable path to explicitly indicate which subcomponents contribute more to the response outcome. We verify the superiority of SubCDR over state-of-the-art CDR prediction methods through extensive computational experiments on the GDSC dataset. Crucially, we found many predicted cases that demonstrate the strength of SubCDR in finding the key subcomponents driving responses and exploiting these subcomponents to discover new therapeutic drugs. These results suggest that SubCDR will be highly useful for biomedical researchers, particularly in anti-cancer drug design.
引用
收藏
页数:21
相关论文
共 58 条
  • [1] Machine learning approaches to drug response prediction: challenges and recent progress
    Adam, George
    Rampasek, Ladislav
    Safikhani, Zhaleh
    Smirnov, Petr
    Haibe-Kains, Benjamin
    Goldenberg, Anna
    [J]. NPJ PRECISION ONCOLOGY, 2020, 4 (01)
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [4] Bianco V, 2002, ANTICANCER RES, V22, P3053
  • [5] The Fusion Gene Landscape in Taiwanese Patients with Non-Small Cell Lung Cancer
    Chang, Ya-Sian
    Tu, Siang-Jyun
    Yen, Ju-Chen
    Lee, Ya-Ting
    Fang, Hsin-Yuan
    Chang, Jan-Gowth
    [J]. CANCERS, 2021, 13 (06) : 1 - 13
  • [6] Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature
    Chang, Yoosup
    Park, Hyejin
    Yang, Hyun-Jin
    Lee, Seungju
    Lee, Kwee-Yum
    Kim, Tae Soon
    Jung, Jongsun
    Shin, Jae-Min
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [7] Gene expression based inference of cancer drug sensitivity
    Chawla, Smriti
    Rockstroh, Anja
    Lehman, Melanie
    Ratther, Ellca
    Jain, Atishay
    Anand, Anuneet
    Gupta, Apoorva
    Bhattacharya, Namrata
    Poonia, Sarita
    Rai, Priyadarshini
    Das, Nirjhar
    Majumdar, Angshul
    Jayadeva
    Ahuja, Gaurav
    Hollier, Brett G.
    Nelson, Colleen C.
    Sengupta, Debarka
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Chung J., 2014, NIPS WORKSH DEEP LEA
  • [9] On the Art of Compiling and Using 'Drug-Like' Chemical Fragment Spaces
    Degen, Joerg
    Wegscheid-Gerlach, Christof
    Zaliani, Andrea
    Rarey, Matthias
    [J]. CHEMMEDCHEM, 2008, 3 (10) : 1503 - 1507
  • [10] Pathway-Guided Deep Neural Network toward Interpretable and Predictive Modeling of Drug Sensitivity
    Deng, Lei
    Cai, Yideng
    Zhang, Wenhao
    Yang, Wenyi
    Gao, Bo
    Liu, Hui
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (10) : 4497 - 4505