Machine-learning-based adverse drug event prediction from observational health data: A review

被引:7
|
作者
Denck, Jonas [1 ]
Ozkirimli, Elif [1 ]
Wang, Ken [2 ]
机构
[1] F Hoffmann La Roche & Cie AG, Roche Informat, Kaiseraugst, Switzerland
[2] Roche Innovat Ctr, Roche Pharmaceut Res & Early Dev, Basel, Switzerland
关键词
machine learning; adverse drug event; electronic health record; prediction model; MODEL; DISEASES;
D O I
10.1016/j.drudis.2023.103715
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Adverse drug events (ADEs) are responsible for a significant number of hospital admissions and fatalities. Machine learning models have been developed to assess the individual patient risk of having an ADE. In this article, we have reviewed studies addressing the prediction of ADEs in observational health data with machine learning. The field of individualised ADE prediction is rapidly emerging through the increasing availability of additional data modalities (e.g., genetic data, screening data, wearables data) and advanced deep learning models such as transformers. Consequently, personalised adverse drug event predictions are becoming more feasible and tangible.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Machine-learning-based prediction of fractional flow reserve after percutaneous coronary intervention
    Hamaya, Rikuta
    Goto, Shinichi
    Hwang, Doyeon
    Zhang, Jinlong
    Yang, Seokhun
    Lee, Joo Myung
    Hoshino, Masahiro
    Nam, Chang-Wook
    Shin, Eun-Seok
    Doh, Joon-Hyung
    Chen, Shao-Liang
    Toth, Gabor G.
    Piroth, Zsolt
    Hakeem, Abdul
    Uretsky, Barry F.
    Hokama, Yohei
    Tanaka, Nobuhiro
    Lim, Hong-Seok
    Ito, Tsuyoshi
    Matsuo, Akiko
    Azzalini, Lorenzo
    Leesar, Massoud A.
    Collet, Carlos
    Koo, Bon-Kwon
    De Bruyne, Bernard
    Kakuta, Tsunekazu
    ATHEROSCLEROSIS, 2023, 383
  • [22] Machine-Learning-Based Methods for Acoustic Emission Testing: A Review
    Ciaburro, Giuseppe
    Iannace, Gino
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [23] Study on Machine Learning and Prediction Model of Adverse Drug Reactions
    Dong, LiHui
    2021 13TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2021), 2021, : 518 - 521
  • [24] Machine-Learning-Based Smart Energy Management Systems: A Review
    EL Husseini, Fatema
    Noura, Hassan
    Vernier, Flavien
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 1296 - 1302
  • [25] A Machine-Learning-Based Approach to Prediction of Biogeographic Ancestry within Europe
    Kloska, Anna
    Gielczyk, Agata
    Grzybowski, Tomasz
    Ploski, Rafal
    Kloska, Sylwester M.
    Marciniak, Tomasz
    Palczynski, Krzysztof
    Rogalla-Ladniak, Urszula
    Malyarchuk, Boris A.
    Derenko, Miroslava V.
    Kovacevic-Grujicic, Natasa
    Stevanovic, Milena
    Drakulic, Danijela
    Davidovic, Slobodan
    Spolnicka, Magdalena
    Zubanska, Magdalena
    Wozniak, Marcin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)
  • [26] Machine-learning-based prediction of cubic perovskite formation energy and magnetism
    Chen J.
    Song Y.
    Li S.
    Que Z.
    Zhang W.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2024, 54 (02): : 247 - 256
  • [27] Machine-learning-based prediction of regularization parameters for seismic inverse problems
    Liu, Shihuan
    Zhang, Jiashu
    ACTA GEOPHYSICA, 2021, 69 (03) : 809 - 820
  • [28] A Machine-Learning-Based Method for Ship Propulsion Power Prediction in Ice
    Zhou, Li
    Sun, Qianyang
    Ding, Shifeng
    Han, Sen
    Wang, Aimin
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [29] Machine-Learning-Based Thermal Conductivity Prediction for Additively Manufactured Alloys
    Bhandari, Uttam
    Chen, Yehong
    Ding, Huan
    Zeng, Congyuan
    Emanet, Selami
    Gradl, Paul R.
    Guo, Shengmin
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (05):
  • [30] A Machine-Learning-Based Importance Sampling Method to Compute Rare Event Probabilities
    Rao, Vishwas
    Maulik, Romit
    Constantinescu, Emil
    Anitescu, Mihai
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 169 - 182