Solving independent set problems with photonic quantum circuits

被引:3
作者
Yin, Xu-Fei [1 ,2 ,3 ,4 ]
Yao, Xing-Can [1 ,2 ,3 ,4 ]
Wu, Biao [1 ,5 ,6 ]
Fei, Yue-Yang [1 ,2 ,3 ,4 ]
Mao, Yingqiu [1 ,2 ,3 ,4 ]
Zhang, Rui [1 ,2 ,3 ,4 ]
Liu, Li-Zheng [1 ,2 ,3 ,4 ]
Wang, Zhenduo [5 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Wilczek, Frank [6 ,7 ,8 ,9 ,10 ]
Chen, Yu-Ao [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[5] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[6] Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
[7] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[8] Shanghai Jiao Tong Univ, T D Lee Inst, Shanghai 200240, Peoples R China
[9] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
[10] Arizona State Univ, Dept Phys & Origins Project, Tempe, AZ USA
基金
上海市科技启明星计划; 中国国家自然科学基金; 瑞典研究理事会; 欧洲研究理事会;
关键词
quantum algorithm; independent sets; adiabatic mixing; photonic quantum computer; OPTIMIZATION; ALGORITHM; CLIQUES; SEARCH;
D O I
10.1073/pnas.2212323120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An independent set (IS) is a set of vertices in a graph such that no edge connects any two vertices. In adiabatic quantum computation [E. Farhi, et al., Science 292, 472-475 (2001); A. Das, B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061-1081 (2008)], a given graph G(V, E) can be naturally mapped onto a many-body Hamiltonian RG(V,E) IS , with edges E being the two-body interactions between adjacent vertices V. Thus, solving the IS problem is equivalent to finding all the computational basis ground states of RG(V,E) IS. Very recently, non-Abelian adiabatic mixing (NAAM) has been proposed to address this task, exploiting an emergent non-Abelian gauge symmetry of RG(V,E) IS [B. Wu, H. Yu, F. Wilczek, Phys. Rev. A 101, 012318 (2020)]. Here, we solve a representative IS problem G(8, 7) by simulating the NAAM digitally using a linear optical quantum network, consisting of three C-Phase gates, four deterministic two-qubit gate arrays (DGA), and ten single rotation gates. The maximum IS has been successfully identified with sufficient Trotterization steps and a carefully chosen evolution path. Remarkably, we find IS with a total probability of 0.875(16), among which the nontrivial ones have a considerable weight of about 31.4%. Our experiment demonstrates the potential advantage of NAAM for solving IS-equivalent problems.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] A Biological Solution to a Fundamental Distributed Computing Problem
    Afek, Yehuda
    Alon, Noga
    Barad, Omer
    Hornstein, Eran
    Barkai, Naama
    Bar-Joseph, Ziv
    [J]. SCIENCE, 2011, 331 (6014) : 183 - 185
  • [2] Digitized adiabatic quantum computing with a superconducting circuit
    Barends, R.
    Shabani, A.
    Lamata, L.
    Kelly, J.
    Mezzacapo, A.
    Heras, U. Las
    Babbush, R.
    Fowler, A. G.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J. Y.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Solano, E.
    Neven, H.
    Martinis, John M.
    [J]. NATURE, 2016, 534 (7606) : 222 - 226
  • [3] Digital quantum simulation of fermionic models with a superconducting circuit
    Barends, R.
    Lamata, L.
    Kelly, J.
    Garcia-Alvarez, L.
    Fowler, A. G.
    Megrant, A.
    Jeffrey, E.
    White, T. C.
    Sank, D.
    Mutus, J. Y.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Hoi, I. -C.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Solano, E.
    Martinis, John M.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Experimental Determination of Ramsey Numbers
    Bian, Zhengbing
    Chudak, Fabian
    Macready, William G.
    Clark, Lane
    Gaitan, Frank
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [5] BOPPANA R, 1990, LECT NOTES COMPUT SC, V447, P13
  • [6] Quantum Simulators
    Buluta, Iulia
    Nori, Franco
    [J]. SCIENCE, 2009, 326 (5949) : 108 - 111
  • [7] AN APPROXIMATION ALGORITHM FOR THE MAXIMUM INDEPENDENT SET PROBLEM ON PLANAR GRAPHS
    CHIBA, N
    NISHIZEKI, T
    SAITO, N
    [J]. SIAM JOURNAL ON COMPUTING, 1982, 11 (04) : 663 - 675
  • [8] Colloquium: Quantum annealing and analog quantum computation
    Das, Amab
    Chakrabarti, Bikas K.
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1061 - 1081
  • [9] Geometric manipulation of trapped ions for quantum computation
    Duan, LM
    Cirac, JI
    Zoller, P
    [J]. SCIENCE, 2001, 292 (5522) : 1695 - 1697
  • [10] AN ANALOG APPROACH TO THE TRAVELING SALESMAN PROBLEM USING AN ELASTIC NET METHOD
    DURBIN, R
    WILLSHAW, D
    [J]. NATURE, 1987, 326 (6114) : 689 - 691