Solving independent set problems with photonic quantum circuits

被引:6
作者
Yin, Xu-Fei [1 ,2 ,3 ,4 ]
Yao, Xing-Can [1 ,2 ,3 ,4 ]
Wu, Biao [1 ,5 ,6 ]
Fei, Yue-Yang [1 ,2 ,3 ,4 ]
Mao, Yingqiu [1 ,2 ,3 ,4 ]
Zhang, Rui [1 ,2 ,3 ,4 ]
Liu, Li-Zheng [1 ,2 ,3 ,4 ]
Wang, Zhenduo [5 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Wilczek, Frank [6 ,7 ,8 ,9 ,10 ]
Chen, Yu-Ao [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[5] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[6] Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
[7] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[8] Shanghai Jiao Tong Univ, T D Lee Inst, Shanghai 200240, Peoples R China
[9] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden
[10] Arizona State Univ, Dept Phys & Origins Project, Tempe, AZ USA
基金
瑞典研究理事会; 欧洲研究理事会; 中国国家自然科学基金; 上海市科技启明星计划;
关键词
quantum algorithm; independent sets; adiabatic mixing; photonic quantum computer; OPTIMIZATION; ALGORITHM; CLIQUES; SEARCH;
D O I
10.1073/pnas.2212323120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An independent set (IS) is a set of vertices in a graph such that no edge connects any two vertices. In adiabatic quantum computation [E. Farhi, et al., Science 292, 472-475 (2001); A. Das, B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061-1081 (2008)], a given graph G(V, E) can be naturally mapped onto a many-body Hamiltonian RG(V,E) IS , with edges E being the two-body interactions between adjacent vertices V. Thus, solving the IS problem is equivalent to finding all the computational basis ground states of RG(V,E) IS. Very recently, non-Abelian adiabatic mixing (NAAM) has been proposed to address this task, exploiting an emergent non-Abelian gauge symmetry of RG(V,E) IS [B. Wu, H. Yu, F. Wilczek, Phys. Rev. A 101, 012318 (2020)]. Here, we solve a representative IS problem G(8, 7) by simulating the NAAM digitally using a linear optical quantum network, consisting of three C-Phase gates, four deterministic two-qubit gate arrays (DGA), and ten single rotation gates. The maximum IS has been successfully identified with sufficient Trotterization steps and a carefully chosen evolution path. Remarkably, we find IS with a total probability of 0.875(16), among which the nontrivial ones have a considerable weight of about 31.4%. Our experiment demonstrates the potential advantage of NAAM for solving IS-equivalent problems.
引用
收藏
页数:8
相关论文
共 40 条
[1]   A Biological Solution to a Fundamental Distributed Computing Problem [J].
Afek, Yehuda ;
Alon, Noga ;
Barad, Omer ;
Hornstein, Eran ;
Barkai, Naama ;
Bar-Joseph, Ziv .
SCIENCE, 2011, 331 (6014) :183-185
[2]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226
[3]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6
[4]   Experimental Determination of Ramsey Numbers [J].
Bian, Zhengbing ;
Chudak, Fabian ;
Macready, William G. ;
Clark, Lane ;
Gaitan, Frank .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[5]  
BOPPANA R, 1990, LECT NOTES COMPUT SC, V447, P13
[6]   Quantum Simulators [J].
Buluta, Iulia ;
Nori, Franco .
SCIENCE, 2009, 326 (5949) :108-111
[7]   AN APPROXIMATION ALGORITHM FOR THE MAXIMUM INDEPENDENT SET PROBLEM ON PLANAR GRAPHS [J].
CHIBA, N ;
NISHIZEKI, T ;
SAITO, N .
SIAM JOURNAL ON COMPUTING, 1982, 11 (04) :663-675
[8]   Colloquium: Quantum annealing and analog quantum computation [J].
Das, Amab ;
Chakrabarti, Bikas K. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :1061-1081
[9]   Geometric manipulation of trapped ions for quantum computation [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
SCIENCE, 2001, 292 (5522) :1695-1697
[10]   AN ANALOG APPROACH TO THE TRAVELING SALESMAN PROBLEM USING AN ELASTIC NET METHOD [J].
DURBIN, R ;
WILLSHAW, D .
NATURE, 1987, 326 (6114) :689-691