Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations

被引:1
作者
Lian, Yuanyuan [1 ]
Zhang, Kai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Boundary regularity; Lipschitz continuity; Hopf lemma; Fully nonlinear elliptic equation; VISCOSITY SOLUTIONS;
D O I
10.1007/s11118-023-10085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary regularity for viscosity solutions of fully nonlinear elliptic equations. We use a unified, simple method to prove that if the domain O satisfies the exterior C(1,Dini )condition at x(0) ? ?O, the solution is Lipschitz continuous at x(0); if O satisfies the interior C-1,C-Dini condition at x(0), the Hopf lemma holds at x(0). The key idea is that the curved boundaries are regarded as perturbations of a hyperplane. Moreover, we show that the C-1,C-Dini conditions are optimal.
引用
收藏
页码:1231 / 1247
页数:17
相关论文
共 50 条
[31]   Regularity for fully nonlinear elliptic equations with natural growth in gradient and singular nonlinearity [J].
Mallick, Mohan ;
Verma, Ram Baran .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 441
[32]   Boundary Holder regularity for elliptic equations [J].
Lian, Yuanyuan ;
Zhang, Kai ;
Li, Dongsheng ;
Hong, Guanghao .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 :311-333
[33]   A HOPF'S LEMMA AND THE BOUNDARY REGULARITY FOR THE FRACTIONAL P-LAPLACIAN [J].
Jin, Lingyu ;
Li, Yan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) :1477-1495
[34]   REGULARITY FOR NONLINEAR ELLIPTIC EQUATIONS AND SYSTEMS [J].
Marcellini, Paolo .
ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2020, 98
[35]   A General Class of Free Boundary Problems for Fully Nonlinear Elliptic Equations [J].
Figalli, Alessio ;
Shahgholian, Henrik .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (01) :269-286
[36]   Pointwise boundary differentiability on Reifenberg domains for fully nonlinear elliptic equations [J].
Wu, Duan ;
Niu, Pengcheng .
MANUSCRIPTA MATHEMATICA, 2022, 169 (3-4) :549-563
[37]   C1,α regularity for fully nonlinear elliptic equations with superlinear growth in the gradient [J].
Nornberg, Gabrielle .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 :297-329
[38]   C1 regularity for some degenerate/singular fully nonlinear elliptic equations [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Oh, Jehan .
APPLIED MATHEMATICS LETTERS, 2023, 146
[39]   Weighted Lorentz estimates for fully nonlinear elliptic equations with oblique boundary data [J].
Junjie Zhang ;
Shenzhou Zheng .
Journal of Elliptic and Parabolic Equations, 2022, 8 :255-281
[40]   c1,β REGULARITY FOR DIRICHLET PROBLEMS ASSOCIATED TO FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS [J].
Birindelli, I. ;
Demengel, F. .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (04) :1009-1024