Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations

被引:1
作者
Lian, Yuanyuan [1 ]
Zhang, Kai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Boundary regularity; Lipschitz continuity; Hopf lemma; Fully nonlinear elliptic equation; VISCOSITY SOLUTIONS;
D O I
10.1007/s11118-023-10085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary regularity for viscosity solutions of fully nonlinear elliptic equations. We use a unified, simple method to prove that if the domain O satisfies the exterior C(1,Dini )condition at x(0) ? ?O, the solution is Lipschitz continuous at x(0); if O satisfies the interior C-1,C-Dini condition at x(0), the Hopf lemma holds at x(0). The key idea is that the curved boundaries are regarded as perturbations of a hyperplane. Moreover, we show that the C-1,C-Dini conditions are optimal.
引用
收藏
页码:1231 / 1247
页数:17
相关论文
共 50 条
[21]   A local Hopf lemma and unique continuation for elliptic equations [J].
Berhanu, S. .
ADVANCES IN MATHEMATICS, 2021, 389
[22]   On the regularity of solutions to fully nonlinear elliptic equations via the Liouville property [J].
Huang, QB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :1955-1959
[23]   A SURVEY ON THE EXISTENCE, UNIQUENESS AND REGULARITY QUESTIONS TO FULLY NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Tyagi, J. ;
Verma, R. B. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2016, 8 (02) :135-205
[24]   Regularity for fully nonlinear parabolic equations with oblique boundary data [J].
Chatzigeorgiou, Georgiana ;
Milakis, Emmanouil .
REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (02) :775-820
[25]   Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian [J].
Miaomiao Cai ;
Fengquan Li ;
Pengyan Wang .
Fractional Calculus and Applied Analysis, 2022, 25 :1037-1054
[26]   Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian [J].
Cai, Miaomiao ;
Li, Fengquan ;
Wang, Pengyan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) :1037-1054
[27]   Weighted Lorentz estimates for fully nonlinear elliptic equations with oblique boundary data [J].
Zhang, Junjie ;
Zheng, Shenzhou .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) :255-281
[28]   Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Lee, Ki-Ahm ;
Lee, Se-Chan .
MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
[29]   Weighted Orlicz regularity estimates for fully nonlinear elliptic equations with asymptotic convexity [J].
Lee, Mikyoung .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (04)
[30]   Regularity of solutions to a class of variable-exponent fully nonlinear elliptic equations [J].
Bronzi, Anne C. ;
Pimentel, Edgard A. ;
Rampasso, Giane C. ;
Teixeira, Eduardo, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (12)