Boundary Lipschitz Regularity and the Hopf Lemma for Fully Nonlinear Elliptic Equations

被引:1
作者
Lian, Yuanyuan [1 ]
Zhang, Kai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Boundary regularity; Lipschitz continuity; Hopf lemma; Fully nonlinear elliptic equation; VISCOSITY SOLUTIONS;
D O I
10.1007/s11118-023-10085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundary regularity for viscosity solutions of fully nonlinear elliptic equations. We use a unified, simple method to prove that if the domain O satisfies the exterior C(1,Dini )condition at x(0) ? ?O, the solution is Lipschitz continuous at x(0); if O satisfies the interior C-1,C-Dini condition at x(0), the Hopf lemma holds at x(0). The key idea is that the curved boundaries are regarded as perturbations of a hyperplane. Moreover, we show that the C-1,C-Dini conditions are optimal.
引用
收藏
页码:1231 / 1247
页数:17
相关论文
共 50 条
  • [21] On the regularity of solutions to fully nonlinear elliptic equations via the Liouville property
    Huang, QB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) : 1955 - 1959
  • [22] A SURVEY ON THE EXISTENCE, UNIQUENESS AND REGULARITY QUESTIONS TO FULLY NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Tyagi, J.
    Verma, R. B.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2016, 8 (02): : 135 - 205
  • [23] Regularity for fully nonlinear parabolic equations with oblique boundary data
    Chatzigeorgiou, Georgiana
    Milakis, Emmanouil
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (02) : 775 - 820
  • [24] Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian
    Miaomiao Cai
    Fengquan Li
    Pengyan Wang
    Fractional Calculus and Applied Analysis, 2022, 25 : 1037 - 1054
  • [25] Radial symmetry and Hopf lemma for fully nonlinear parabolic equations involving the fractional Laplacian
    Cai, Miaomiao
    Li, Fengquan
    Wang, Pengyan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 1037 - 1054
  • [26] Weighted Lorentz estimates for fully nonlinear elliptic equations with oblique boundary data
    Zhang, Junjie
    Zheng, Shenzhou
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 255 - 281
  • [27] Global regularity results for a class of singular/degenerate fully nonlinear elliptic equations
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Lee, Ki-Ahm
    Lee, Se-Chan
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
  • [28] Weighted Orlicz regularity estimates for fully nonlinear elliptic equations with asymptotic convexity
    Lee, Mikyoung
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (04)
  • [29] Regularity of solutions to a class of variable-exponent fully nonlinear elliptic equations
    Bronzi, Anne C.
    Pimentel, Edgard A.
    Rampasso, Giane C.
    Teixeira, Eduardo, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (12)
  • [30] Boundary Holder regularity for elliptic equations
    Lian, Yuanyuan
    Zhang, Kai
    Li, Dongsheng
    Hong, Guanghao
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 143 : 311 - 333