Uncertainty-Aware Point-Cloud Semantic Segmentation for Unstructured Roads

被引:4
|
作者
Liu, Pengfei [1 ,2 ]
Yu, Guizhen [1 ,2 ]
Wang, Zhangyu [3 ,4 ]
Zhou, Bin [3 ,4 ]
Ming, Ruotong [5 ]
Jin, Chunhua [6 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Autonomous Transportat Technol Special Ve, Beijing 100191, Peoples R China
[3] Beihang Univ, Res Inst Frontier Sci, Beijing 100191, Peoples R China
[4] Beihang Univ, Hefei Innovat Res Inst, Hefei 230012, Peoples R China
[5] Chongqing Univ, Chongqing Univ Univ Cincinnati Joint Co op Inst, Chongqing 400044, Peoples R China
[6] Beijing Informat Sci & Technol Univ, Res Inst Artificial Intelligence, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Semantic segmentation; Roads; Sensors; Semantics; Estimation; Convolution; Point cloud; semantic segmentation; uncertainty estimation; unstructured roads; LANE-DETECTION; CLASSIFICATION; NAVIGATION;
D O I
10.1109/JSEN.2023.3266802
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Semantic segmentation is one of the fundamental elements for achieving effective and safe autonomous driving. However, due to the irregular boundaries and variable illumination of unstructured roads, applying it in these scenarios is confronted with great challenges. To address these problems, a novel point-cloud semantic segmentation framework for unstructured roads is proposed. It contains three sections: spherical projection, an uncertainty-aware semantic segmentation network, and postprocessing. First, point cloud will be projected to the range image, which can be processed by the 2-D convolution network. Then, the uncertainty-aware semantic segmentation network is constructed. It consists of context-aware attention (CAA) module and direction attention up-sampling (DAU) module, which can improve the performance for the segmentation of unstructured roads. In addition, a Gaussian mixture model (GMM) is introduced at the end of the network to predict the result with uncertainty, indicating the confidence level of the output. Finally, the segmentation result is refined during the postprocessing to help filter the noise points. Experimental data from mine sites were collected to validate the performance for unstructured roads. In addition, the proposed method was evaluated on the public unstructured dataset RELLIS-3-D. The experiments show that the proposed architecture achieved 74.9% and 40.4% mIoU, which performs better than comparison methods. Additionally, the network is more robust to noisy data by achieving improvements of 4.6%-7.6% under different levels of noise data.
引用
收藏
页码:15071 / 15080
页数:10
相关论文
共 50 条
  • [41] Predictable Uncertainty-Aware Unsupervised Deep Anomaly Segmentation
    Sato, Kazuki
    Hama, Kenta
    Matsubara, Takashi
    Uehara, Kuniaki
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [42] Semantic Context Encoding for Accurate 3D Point Cloud Segmentation
    Liu, Hao
    Guo, Yulan
    Ma, Yanni
    Lei, Yinjie
    Wen, Gongjian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2045 - 2055
  • [43] Weakly-Supervised Point Cloud Semantic Segmentation Based on Dilated Region
    Zhang, Lujian
    Bi, Yuanwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [44] ProPanDL: A Modular Architecture for Uncertainty-Aware Panoptic Segmentation
    Deery, Jacob
    Lee, Chang Won
    Waslander, Steven L.
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 137 - 144
  • [45] Estimating Uncertainty of Point-Cloud Based Single-Tree Segmentation with Ensemble Based Filtering
    Parkan, Matthew
    Tuia, Devis
    REMOTE SENSING, 2018, 10 (02):
  • [46] A Hybrid Semantic Point Cloud Classification-Segmentation Framework Based on Geometric Features and Semantic Rules
    Martin Weinmann
    Stefan Hinz
    Michael Weinmann
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 183 - 194
  • [47] A Hybrid Semantic Point Cloud Classification-Segmentation Framework Based on Geometric Features and Semantic Rules
    Weinmann, Martin
    Hinz, Stefan
    Weinmann, Michael
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (03): : 183 - 194
  • [48] Machine Learning Based MMS Point Cloud Semantic Segmentation
    Bae, Jaegu
    Seo, Dongju
    Kim, Jinsoo
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (05) : 939 - 951
  • [49] An Onboard Point Cloud Semantic Segmentation System for Robotic Platforms
    Wang, Fei
    Yang, Yujie
    Zhou, Jingchun
    Zhang, Weishi
    MACHINES, 2023, 11 (05)
  • [50] Compositional Semantic Mix for Domain Adaptation in Point Cloud Segmentation
    Saltori, Cristiano
    Galasso, Fabio
    Fiameni, Giuseppe
    Sebe, Nicu
    Poiesi, Fabio
    Ricci, Elisa
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 14234 - 14247