Uncertainty-Aware Point-Cloud Semantic Segmentation for Unstructured Roads

被引:4
|
作者
Liu, Pengfei [1 ,2 ]
Yu, Guizhen [1 ,2 ]
Wang, Zhangyu [3 ,4 ]
Zhou, Bin [3 ,4 ]
Ming, Ruotong [5 ]
Jin, Chunhua [6 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Autonomous Transportat Technol Special Ve, Beijing 100191, Peoples R China
[3] Beihang Univ, Res Inst Frontier Sci, Beijing 100191, Peoples R China
[4] Beihang Univ, Hefei Innovat Res Inst, Hefei 230012, Peoples R China
[5] Chongqing Univ, Chongqing Univ Univ Cincinnati Joint Co op Inst, Chongqing 400044, Peoples R China
[6] Beijing Informat Sci & Technol Univ, Res Inst Artificial Intelligence, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty; Semantic segmentation; Roads; Sensors; Semantics; Estimation; Convolution; Point cloud; semantic segmentation; uncertainty estimation; unstructured roads; LANE-DETECTION; CLASSIFICATION; NAVIGATION;
D O I
10.1109/JSEN.2023.3266802
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Semantic segmentation is one of the fundamental elements for achieving effective and safe autonomous driving. However, due to the irregular boundaries and variable illumination of unstructured roads, applying it in these scenarios is confronted with great challenges. To address these problems, a novel point-cloud semantic segmentation framework for unstructured roads is proposed. It contains three sections: spherical projection, an uncertainty-aware semantic segmentation network, and postprocessing. First, point cloud will be projected to the range image, which can be processed by the 2-D convolution network. Then, the uncertainty-aware semantic segmentation network is constructed. It consists of context-aware attention (CAA) module and direction attention up-sampling (DAU) module, which can improve the performance for the segmentation of unstructured roads. In addition, a Gaussian mixture model (GMM) is introduced at the end of the network to predict the result with uncertainty, indicating the confidence level of the output. Finally, the segmentation result is refined during the postprocessing to help filter the noise points. Experimental data from mine sites were collected to validate the performance for unstructured roads. In addition, the proposed method was evaluated on the public unstructured dataset RELLIS-3-D. The experiments show that the proposed architecture achieved 74.9% and 40.4% mIoU, which performs better than comparison methods. Additionally, the network is more robust to noisy data by achieving improvements of 4.6%-7.6% under different levels of noise data.
引用
收藏
页码:15071 / 15080
页数:10
相关论文
共 50 条
  • [21] Pixel Exclusion: Uncertainty-aware Boundary Discovery for Active Cross-Domain Semantic Segmentation
    You, Fuming
    Li, Jingjing
    Chen, Zhi
    Zhu, Lei
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1866 - 1874
  • [22] UTLNet: Uncertainty-Aware Transformer Localization Network for RGB-Depth Mirror Segmentation
    Zhou, Wujie
    Cai, Yuqi
    Zhang, Liting
    Yan, Weiqing
    Yu, Lu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4564 - 4574
  • [23] Uncertainty-Aware Boundary Attention Network for Real-Time Semantic Segmentation
    Zhu, Yuanbing
    Zhu, Bingke
    Chen, Yingying
    Wang, Jinqiao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 388 - 400
  • [24] Point attention network for point cloud semantic segmentation
    Ren, Dayong
    Wu, Zhengyi
    Li, Jiawei
    Yu, Piaopiao
    Guo, Jie
    Wei, Mingqiang
    Guo, Yanwen
    SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (09)
  • [25] Point attention network for point cloud semantic segmentation
    Dayong Ren
    Zhengyi Wu
    Jiawei Li
    Piaopiao Yu
    Jie Guo
    Mingqiang Wei
    Yanwen Guo
    Science China Information Sciences, 2022, 65
  • [26] Hyperbolic Uncertainty Aware Semantic Segmentation
    Chen, Bike
    Peng, Wei
    Cao, Xiaofeng
    Roning, Juha
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1275 - 1290
  • [27] Geometry-Injected Image-Based Point Cloud Semantic Segmentation
    Shuai, Hui
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] A Point-Cloud Segmentation Network Based on SqueezeNet and Time Series for Plants
    Peng, Xingshuo
    Wang, Keyuan
    Zhang, Zelin
    Geng, Nan
    Zhang, Zhiyi
    JOURNAL OF IMAGING, 2023, 9 (12)
  • [29] On Adversarial Robustness of Point Cloud Semantic Segmentation
    Xu, Jiacen
    Zhou, Zhe
    Feng, Boyuan
    Ding, Yufei
    Li, Zhou
    2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS, DSN, 2023, : 531 - 544
  • [30] PCL: Point Contrast and Labeling for Weakly Supervised Point Cloud Semantic Segmentation
    Du, Anan
    Zhou, Tianfei
    Pang, Shuchao
    Wu, Qiang
    Zhang, Jian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8902 - 8914