Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers

被引:14
作者
Bouloumis, Theodoros D. [1 ]
Kotsifaki, Domna G. [1 ,2 ]
Chormaic, Sile Nic [1 ]
机构
[1] Technol Grad Univ, Okinawa Inst Sci, Okinawa 9040495, Japan
[2] Duke Kunshan Univ, Nat & Appl Sci, Kunshan 215316, Jiangsu, Peoples R China
基金
日本学术振兴会;
关键词
metamaterial tweezers; self-induced back-action; plasmonic tweezers; gold nanoparticle trapping; Fano resonance; OPTICAL TWEEZERS; NANOSTRUCTURES; FORCE; MANIPULATION; PARTICLES; SIZE;
D O I
10.1021/acs.nanolett.2c04492
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The pursuit for efficient nanoparticle trapping withlow powershas led to optical tweezers technology moving from the conventionalfree-space configuration to advanced plasmonic systems. However, trappingnanoparticles smaller than 10 nm still remains a challenge even forplasmonic tweezers. Proper nanocavity design and excitation has givenrise to the self-induced back-action (SIBA) effect offering enhancedtrap stiffness with decreased laser power. In this work, we investigatethe SIBA effect in metamaterial tweezers and its synergy with theexhibited Fano resonance. We demonstrate stable trapping of 20 nmgold particles with trap stiffnesses as high as 4.18 +/- 0.2 (fN/nm)/(mW/mu m(2)) and very low excitation intensity. Simulations reveal theexistence of two different groups of hotspots on the plasmonic array.The two hotspots exhibit tunable trap stiffnesses, a unique featurethat can allow for sorting of particles and biological molecules basedon their characteristics.
引用
收藏
页码:4723 / 4731
页数:9
相关论文
共 62 条
  • [1] A chiral trick to map protein ligandability
    Amako, Yuka
    Woo, Christina M.
    [J]. NATURE CHEMISTRY, 2019, 11 (12) : 1080 - 1082
  • [2] OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES
    ASHKIN, A
    DZIEDZIC, JM
    BJORKHOLM, JE
    CHU, S
    [J]. OPTICS LETTERS, 1986, 11 (05) : 288 - 290
  • [3] ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE
    ASHKIN, A
    [J]. PHYSICAL REVIEW LETTERS, 1970, 24 (04) : 156 - &
  • [4] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [5] Photoinduced Heating of Nanoparticle Arrays
    Baffou, Guillaume
    Berto, Pascal
    Urena, Esteban Bermudez
    Quidant, Romain
    Monneret, Serge
    Polleux, Julien
    Rigneault, Herve
    [J]. ACS NANO, 2013, 7 (08) : 6478 - 6488
  • [6] Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures
    Bouloumis, Theodoros D.
    Kotsifaki, Domna G.
    Han, Xue
    Chormaic, Sile Nic
    Truong, Viet Giang
    [J]. NANOTECHNOLOGY, 2021, 32 (02)
  • [7] From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping
    Bouloumis, Theodoros D.
    Chormaic, Sile Nic
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [8] Does thermophoretic mobility depend on particle size?
    Braibanti, Marco
    Vigolo, Daniele
    Piazza, Roberto
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (10)
  • [9] Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines
    Correia Carabineiro, Sonia Alexandra
    [J]. MOLECULES, 2017, 22 (05):
  • [10] Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology
    Daniel, MC
    Astruc, D
    [J]. CHEMICAL REVIEWS, 2004, 104 (01) : 293 - 346