Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations

被引:2
作者
Wang, Jing-Xuan [1 ]
Sun, Bao-Zhen [1 ,2 ,3 ]
Li, Mei [1 ]
Wu, Mu-Sheng [1 ]
Xu, Bo [1 ]
机构
[1] Jiangxi Normal Univ, Dept Phys, Lab Computat Mat Phys, Nanchang 330022, Peoples R China
[2] Jiangxi Normal Univ, Inst Adv Sci Res iASR, Nanchang 330022, Peoples R China
[3] Jiangxi Normal Univ, Key Lab Funct Small Mol, Minist Educ, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
solid-state electrolyte; Li7La3Zr2O12 (LLZO) surface; Li-ion migration; first-principles calculations; LITHIUM DISTRIBUTION; ELECTROLYTES; CONDUCTORS; BATTERY; DESIGN; LLZO;
D O I
10.1088/1674-1056/acc05d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Garnet-type Li7La3Zr2O12 (LLZO) is a promising solid-state electrolyte for Li-ion batteries, but Li-dendrite's formation greatly limits the applications. In this paper, we systematically investigate the stability, electronic properties, and Li-ion mobility of the LLZO surface by the first-principles calculations. We consider the (110) and (001) slab structures with different terminations in the t- and c-LLZO. Our results indicate that both (110) and (001) surfaces prefer to form Li-rich termination due to their low surface energies for either t- or c-LLZO. Moreover, with the decrease of Li contents the stability of Li-rich surfaces is improved initially and degrades later. Unfortunately, the localized surface states at the Fermi level can induce the formation of metallic Li on the Li-rich surfaces. In comparison, Li/La-termination has a relatively low metallic Li formation tendency due to its rather low diffusion barrier. In fact, Li-ion can spontaneously migrate along path II (Li3 -> Li2) on the Li/La-T(001) surface. In contrast, it is more difficult for Li-ion diffusion on the Li-T(001) surface, which has a minimum diffusion barrier of 0.50 eV. Interestingly, the minimum diffusion barrier decreases to 0.34 eV when removing four Li-ions from the Li-T(001) surface. Thus, our study suggests that by varying Li contents, the stability and Li-ion diffusion barrier of LLZO surfaces can be altered favorably. These advantages can inhibit the formation of metallic Li on the LLZO surfaces.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[3]   Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 [J].
Awaka, Junji ;
Takashima, Akira ;
Kataoka, Kunimitsu ;
Kijima, Norihito ;
Idemoto, Yasushi ;
Akimoto, Junji .
CHEMISTRY LETTERS, 2011, 40 (01) :60-62
[4]   Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte [J].
Basappa, Rajendra Hongahally ;
Ito, Tomoko ;
Morimura, Takao ;
Bekarevich, Raman ;
Mitsuishi, Kazutaka ;
Yamada, Hirotoshi .
JOURNAL OF POWER SOURCES, 2017, 363 :145-152
[5]   Particle Morphology and Lithium Segregation to Surfaces of the Li7La3Zr2O12 Solid Electrolyte [J].
Canepa, Pieremanuele ;
Dawson, James A. ;
Gautam, Gopalakrishnan Sai ;
Statham, Joel M. ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2018, 30 (09) :3019-3027
[6]   Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery [J].
Chai, Ming ;
Jin, Yide ;
Fang, Shaohua ;
Yang, Li ;
Hirano, Shin-ichi ;
Tachibana, Kazuhiro .
ELECTROCHIMICA ACTA, 2012, 66 :67-74
[7]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[8]   Surface-Dependent Stability of the Interface between Garnet Li7La3Zr2O12 and the Li Metal in the All-Solid-State Battery from First-Principles Calculations [J].
Gao, Bo ;
Jalem, Randy ;
Tateyama, Yoshitaka .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) :16350-16358
[9]   Atomistic Insight into Ion Transport and Conductivity in Ga/Al-Substituted Li7La3Zr2O12 Solid Electrolytes [J].
Garcia Daza, Fabian A. ;
Bonilla, Mauricio R. ;
Llordes, Anna ;
Carrasco, Javier ;
Aldimatskaya, Elena .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :753-765
[10]   Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor [J].
Geiger, Charles A. ;
Alekseev, Evgeny ;
Lazic, Biljana ;
Fisch, Martin ;
Armbruster, Thomas ;
Langner, Ramona ;
Fechtelkord, Michael ;
Kim, Namjun ;
Pettke, Thomas ;
Weppner, Werner .
INORGANIC CHEMISTRY, 2011, 50 (03) :1089-1097